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Abstract

In this thesis, we investigate the periodic character, invariant intervals,oscillation and

global stability of all positive solutions of the equation :

xn+1 =
α + βxn + γxn−k

Bxn + Cxn−k

where the parameters, α, β, γ, B, and C and the initial conditions are nonnegative.

We give a detailed description of the semicyles of solutions, and determine conditions

that the equilibrium points are globally asymptotically stable.

In particular, our monograph is a generalization to the rational difference equation

that was investigated in [6].
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Introduction

Difference equations are relatively new discipline within the fields of science and

engineering. Difference equations appear in the literature under variety of names.

There are large number of applications on dynamical systems and difference equations.

These applications include mathematical, physical, biological, economical, and social

science. Rational difference equations lack of complete theory, and the study of such

equations is quite challenging and still at its infancy.

Rational difference equations are of great importance in their own right. And fur-

thermore that results about such equation offer prototypes towards the development

of the basic theory of the global behavior of solutions of nonlinear difference equations

of order greater than one. The techniques and results about these equations are also

useful in analyzing the equations in the mathematical models of various biological

systems and other applications.

The Dynamical characteristics and qualitative behavior of positive solutions of

some higher order nonlinear difference equations have been investigated by many

authors.

1
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Dehgan and Douraki [3] investigated the global stability, invariant intervals, semi-

cycles, and the boundness of the equation:

xn+1 =
xn + p

xn + qxn−k

, n = 0, 1, 2, · · · (0.1)

where the parameters p and q are nonnegative and the initial conditions x−k, ..., x0

are positive real numbers, k = {1, 2, 3, · · · }.

Li and Sun in [16] investigated the periodic character, invariant intervals, oscilla-

tion, and global stability of all positive solutions of the equation

xn+1 =
pxn + xn−k

q + xn−k

, n = 0, 1, 2, · · · (0.2)

where the parameters p and q and the initial conditions x−k, x−k+1, · · · , x−1, x0 are

nonnegative real numbers, k = {1, 2, 3, · · · }.

M. Saleh and M. Aloqeili in [15] investigated the equation

yn+1 = A +
yn

yn−k

, n = 0, 1, 2, ... (0.3)

M. Saleh and M. Aloqeili in [14] and H.M. El-Owaidy, A.M. Ahmed, and M.S.

Mousa [9] investigated the global asymptotic stability, periodicity and semi-cycle

analysis of the unique positive equilibrium point of the equation

yn+1 = A +
yn−k

yn

, n = 0, 1, 2, ... (0.4)

DeVault in [5] investigated the global stability and periodic character of solutions

of the equation

xn+1 =
p + xn−k

qxn + xn−k

, n = 0, 1, 2, · · · (0.5)
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where the parameters p and q and the initial conditions x−k, x−k+1, · · · , x−1, x0 are

nonnegative real numbers, k = {1, 2, 3, · · · }.

M.J. Douraki, M. Dehghan, and M. Razzaghi in [10] and [4] investigated the

qualitative behavior of the equations

xn+1 =
p + qxn−k

1 + xn

, n = 0, 1, 2, ... (0.6)

and

xn+1 =
p + qyn

1 + yn−k

, n = 0, 1, 2, ... (0.7)

S. Abu Bahaa in [1] has investigated the local and global stability, invariant

intervals, semicycles, periodic character of solutions of the difference equation

xn+1 =
βxn + γxn−k

Bxn + Cxn−k

, n = 0, 1, 2, · · · (0.8)

where the parameters β, γ, B, and C and the initial conditions x−k, x−k+1, · · · , x−1, x0

are nonnegative real numbers, k = {1, 2, 3, · · · }.

To analyze equation xn+1 = α+βxn+γxn−k

Bxn+Cxn−k
theoritically, it is a good idea to study

the difference equation

xn+1 =
α + βxn−1 + γxn−1

Bxn + Cxn−1

, n = 0, 1, 2, · · ·

where the parameters α, β, γ, B, and C are nonnegative real numbers and the initial

conditions x−1, x0 are arbitrary positive real numbers.
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The goal of our research on rational difference equations is to determine the char-

acter of solutions of equation

xn+1 =
α + βxn + γxn−k

Bxn + Cxn−k

, n = 0, 1, 2, ...

for all nonnegative parametersα, β, γ, B and C and nonnegative initial conditions

x−k, x−k+1, ..., x0. We are particularly interested in the asymptotic behavior of

solutions, that is, the behavior of the solution as n → ∞. We will determine the

conditions for stability and give detailed description for Invariant interval, Existence

of two-period solution, and Semicyle analysis.

Chapter 1 is an introduction to Difference equations. It includes linear and nonlin-

ear first order difference equation or one dimensional maps on the real line, kth order

Difference equations, and Equilibrium point concept. we give solution methods for

linear difference equations of any order, and complete analysis of stability for many

famous equations such as Linear Difference equations and Logistic Map. It includes

Cobweb diagram, an effective graphical iteration methods to determine the stability

of fixed points.

Chapter 2 introduces Rational Difference Equation, and some definitions and the-

orems that will be used next.

In Chapter 3 we investigate the rational difference equation

xn+1 =
α + βxn + γxn−k

Bxn + Cxn−k

, n = 0, 1, ...
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We do change of variable to reduce number of parameters. Then we find the equilib-

rium point, and determine the conditions for stability. We give a detailed description

of invariant intervals. Then we determine the conditions to Existence of two-cycles

and semicycles. It is important to mention that chapter 3 has been done indepen-

dently with Aseel Farhat.

In Chapter 4 we examine the character of solution of

xn+1 =
α + βxn + γxn−k

Bxn + Cxn−k

, n = 0, 1, ...

when one or more of the parameters are zero.

Finally, Chapter 5 presents numerical solutions obtained by using computer which

is very good. We use a powerful Matlab and create mfiles to get plots and numerical

solutions of equations. We also create Phase Space Diagram which is one of the best

graphical methods to illustrate the various notions of stability. We compare between

theoretical approach and computational approach, this is an important part of my

thesis.



Chapter 1

Preliminary and Basic Theory Of
Difference Equation

1.1 Introduction

The theory of dynamical systems is a major mathematical discipline closely inter-

twined with most of the main areas of mathematics. Its mathematical core is the

study of the global orbit structure of maps and flows with emphasis on properties

invariant under coordinate changes. Its concepts, methods, and paradigms greatly

stimulate research in many sciences and have given rise to the vast new area of ap-

plied dynamics (also called nonlinear science or chaos theory). Although the field

of dynamical systems comprises several major disciplines, we are interested mainly

in dynamics of difference equations. The theory of dynamical systems is insepara-

ble connected with several other areas, primarily difference equations and differential

equations.

The dynamic of any situation refers to how the situation changes over the course

6
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of time. A dynamical system is a physical setting with rules for how the setting

changes or evolves from one moment of time to the next, i.e. a dynamical system is

a system that changes over time. [1]. Dynamical system is contrast to static system

which does not change over time.

When we model a system, we usually idealize the system in term of its state

variable of the system, which are quantities that represent the system itself. For

example, moving body may be represented by state variable of velocity and position

over time. Model of population dynamic, the system state variable me be the number

of population that born, migrate, and dead and the existing population.

In other words, dynamical systems is the study of phenomena that evolve in space

and / or time by looking at the dynamic behavior or the geometrical and topological

properties of the solution. Whether a particular system comes from Economics, Biol-

ogy, Physics, Chemistry, or even Social sciences, the dynamical systems is the subject

that provides the mathematical tools for its analysis.

Now, we introduce the Dynamical system in point of view of mathematics. A

dynamical system is a system whose behavior at given time depends, in some sense, on

its behavior at one or more previous times.the words ”in some sense” in the preceding

sentence should be taken to mean that we may or may not have a clue as to how

current state of a system depends on a past state; but we have reason to believe that

it does. Furthermore, it is the task of the mathematical modeler to come up with a
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mathematical construct, a model that will describe this relationship between current

and past states of the system so that predictions about the future course of events

for the system may be made with some degree of accuracy. [1].

1.2 Difference Equations

Dynamical systems has appeared in mathematics and engineering in many different

forms and names regardless that they lead to same discipline. Our particular system

is the system whose state depends on input history. In discrete time system, we

call such system is difference equation which is equivalent to differential equation in

continuous time. In this section we will talk about difference equation: definition,

solution, difference equations in literature, and disciplines. While the behavior of

solution of difference equation is left and we will discuss in chapter two. Difference

equation is an equation involving differences. In this research We will investigate

difference equation from two points of view: as sequence of numbers, and iterated

function. they are equivalent, but we look at them in different points of view and for

different purposes.

1. A difference equation is a sequence of numbers that is generated recursively

using a rule to relate each number in the sequence to previous numbers in the

sequence. [1]

Example 1.1. (Fibonacci sequence)
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The sequence {1,1,2,3,5,8,13,21,34,...} is called Fibonacci sequence, which
is generated by the formula

xk+2 = xk+1 + xk

where x0 = x1 = 1 and k = 0, 1, 2, · · · .

2. Difference equation as an iterated map : Consider a map f : R → R where R

is the set of real numbers. Then the (positive) Orbit O(x0) of a point x0 ∈ R

is defined to be the set of points

O(x0) = {x0, f(x0), f 2(x0), f 3(x0), · · · }

where f 2 = f ◦ f , f 3 = f ◦ f ◦ f , etc. and f ◦ f(x0) = f(f(x0))

Example 1.2. (The Logistic Map) The following mathematical model may be
of the form

yn+1 = µ yn − b y2
n (1.1)

where yn be the size of a population of a certain species at time n, µ is the rate
of growth of the population from one generation to another, and b is the pro-
portionality constant of interaction among numbers of the species. To simplify
Equation( 1.1), we let xn = b

µ
yn. Hence,

xn+1 = µxn(1− xn) (1.2)

Equation(1.2) is called the logistic equation and the map f(x) = µx(1 − x) is
called logistic map. by varying the value of µ, this equation exhibits somewhat
complicated dynamics.

In the remaining of this chapter we will discuss the methodology of solving Dif-

ference equations and investigate their solution as n →∞.
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1.3 Solution of Linear first order Difference Equa-

tions

Definition 1.1. Consider a map f : < → <. Let xn = fn(x0) where x0 ∈ <. The
following equation

xn+1 = f(xn) (1.3)

is called first order difference equation with initial value x0.

Definition 1.2. A solution of difference equation is the set of numbers that makes
the difference equation true for all values. In other words, by a solution of Eq.(1.3),
we mean a sequence {xn}, n=0,1,2,..., with xn+1 = f(xn) and given x0, i.e., a sequence
that satisfies the equation.

The nature of difference equations allows the solution to be calculated recursively.

So it is easier and better to see the solution of the difference equation through algebraic

formula. In this case the difference equation is called closed form.

The simplest maps to deal with are the linear maps and the simplest difference

equations to solve are linear ones. Despite Linear equations play an important role in

mathematics because are being used to illustrate many situations since their solutions

are simple to achieve. Many cases in natural and social science are modeled by linear

equations. We can find out the solution of linear first order difference equation by

forward iteration with initial condition x0. Let us consider the following difference

equation

xn+1 = axn

with initial condition x0. Observe that the equilibrium point x = 0. We get the

solution by forward iteration with initial condition, x0
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x1 = ax0

x2 = ax1 = a(ax0) = a2x0

x3 = ax2 = a3x0

...

xn = anx0

We can make the following results about the limiting behavior of the solution of

equation xn+1 = axn:

1. If |a| < 1 , then limn→∞ xn = 0

2. If |a| > 1 , then limn→∞ xn = ∞

3. If a = 1 , then every point is an equilibrium point.

4. If a = −1 , then xn =

{
x0 if n is even

−x0 if n is odd

or xn = (−1)nx0

Example 1.3. Assume we have the following difference equation

xn+1 = axn + b

with initial value x0 and we have to solve this equation. There are three cases :

1. a 6= 1 Observe that the equilibrium point

x =
b

1− a
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The solution of difference equation can be calculated recursively

x1 = ax0 + b

x2 = ax1 + b = a(ax0 + b) + b = a2x0 + ab + b

x3 = ax2 + b = a(a2x0 + ab + b) + b = a3x0 + a2b + ab + b

x4 = ax3 = a(a3x0 + a2b + ab + b) + b = a4x0 + a3b + a2b + ab + b

...

xn = anx0 + an−1b + an−2b + · · ·+ ab + b

xn = anx0 + b(an−1 + an−2 + · · ·+ a + 1)

xn = anx0 + b(
1− an

1− a
), a 6= 1

xn = (x0 +
b

a− 1
)an +

b

1− a
, a 6= 1 (1.4)

Using the formula of Eq.( 1.4), the following conclusions can be easily verified:

(a) If |a| < 1, then limn→∞ xn = b
1−a

= x

(b) If |a| > 1, then limn→∞ xn = ±∞, depending on weather x0+
b

1−a
is positive

or negative, respectively.

2. If a = 1, then xn = x0 + nb and limn→∞ xn = ±∞

3. If a = −1, then xn = (−1)nx0 +

{
0; if n is even
b; if n is odd

1.4 Solutions of Difference Equations of Higher

Order

The normal form of kthorder nonhomogeneous linear difference equation is given by:

xn+k + p1(n)xn+k−1 + p2(n)xn+k−2 + · · ·+ pk(n)xn = g(n) (1.5)

where pi(n) and g(n) are real valued functions defined for n ≥ n0 and pk(n) 6= 0. If

g(n) = 0 , then the Eq.( 1.5) is said to be a homogeneous equation. Now the equation:

xn+k + p1xn+k−1 + p2xn+k−2 + · · ·+ pkxn = 0 (1.6)
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is called linear difference equation of kthorder with constant coefficients. To the end

of this section we will give all possible solutions of Eq.( 1.6), and the solutions of

Eq.( 1.5) have been investigated in [7]

1.4.1 Solutions of kth order homogeneous linear difference
with constant coefficients

Now, consider the kth order homogeneous linear difference equation ( 1.6) where the

pi’s are constant and pk 6= 0. Define λ to be the characteristic root of Eq.( 1.6), then

λn is a solution of Eq.( 1.6). Substitute λn into Eq.( 1.6), we obtain:

λn + p1λ
k−1 + · · ·+ p1 = 0 (1.7)

which is called the characteristic equation of Eq.( 1.6).

The general solution of Eq.( 1.6) has different forms depending on λs.

1. Distinct roots

Suppose that the characteristic roots λ1, λ2, · · · , λk are distinct. i.e.

|λ1| 6= |λ2| 6= · · · 6= |λk|

So the general solution is:

xn = c1λ
n
1 + c2λ

n
2 + · · ·+ ckλ

n
k

Example 1.4. Find the solution of the following difference equation

xn+2 + 2xn+1 − 8xn = 0, x0 = 2, x1 = 3

Solution:
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The characteristic equation of the above difference equation is:

λ2 + 2λ− 8 = 0

The characteristic roots are: λ1 = 2, λ2 = −4, The general solution is given by

xn = c1(2)n + c2(−4)n

x0 = 2 = c1 + c2

x1 = 3 = 2c1 − 4c2

Thus c1 = 11
6

and c2 = 1
6
. Consequently, the general solution is:

xn =
11

6
(2)n +

1

6
(−4)n

2. Repeated Roots

λ1 = λ2 = · · · = λm = λ, 2 ≤ m ≤ k

so the general solution of difference equation( 1.6) is given by:

xn = c1λ
n + c2nλn + · · ·+ cmnm−1λn + cm+1λ

n
m+1 + · · ·+ ckλ

n
k

Example 1.5. Find the solution of the following difference equation

xn+2 + 6xn+1 + 9xn = 0, x0 = 1, x1 = 0

Solution:
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The characteristic equation of the above difference equation is:

λ2 + 6λ + 9 = 0

so λ1 = λ2 = −3,The general solution is given by

xn = c1(−3)n + c2n(−3)n

x0 = 1 = c1

x1 = 0 = −3c1 − 3c2

Thus, c2 = −1 and, consequently,

xn = (−3)n − n(−3)n

= (−3)n(1− n)

3. The absolute value of the roots are equal

i.e.

|λ1| = |λ2| = · · · = |λk|

• The characteristic roots are equal

the general solution is:

xn = c1λ
n + c2nλn + · · ·+ ckn

k−1λn

= (c1 + c2n + · · ·+ ckn
k−1)λn
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• The characteristic roots are not equal

λ1 = λ2 = · · · = λm = λ

and

λm+1 = λm+2 = · · · = λk = −λ

The general solution is given by:

xn = (c1 + c2n + c3n
2 + · · ·+ cmnm−1)λn +

(cm+1 + cm+2n + cm+3n
2 + · · ·+ ckn

k−m−1)(−1)nλn

Example 1.6. Find the solution of the following difference equation

xn+2 − 4xn = 0

Solution: The characteristic equation is

λ2 − 4 = 0

λ = ±2

So the general solution is given by:

xn = c12
n + c2(−2)n

= c12
n + c2(−1)n2n

= (c1 + (−1)nc2)2
n

4. Some of roots are complex

Assume that

λ1 = α + iβ
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and

λ2 = α− iβ

and that λ3, λ4, · · · , λk are all real and distinct such that

|λ3| > |λ4| > · · · > |λk|

where

λ1 = α + iβ

= reiφ

= r(cos φ + i sin φ)

and

λ2 = α− iβ

= re−iφ

= r(cos φ− i sin φ)
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Then the general solution of Eq.(1.6) is given by:

xn = c1r
neinφ + c2r

ne−inφ + c3λ
n
3 + · · ·+ ckλ

n
k

= c1r
n(cos nφ + i sin nφ) + c2r

n(cos nφ− i sin nφ) + c3λ
n
3 + · · ·+ ckλ

n
k

= (c1 + c2)r
n cos nφ + (c1 − c2)r

ni sin nφ + c3λ
n
3 + · · ·+ ckλ

n
k

= rn[(c1 + c2) cos nφ + (c1 − c2)i sin nφ] + c3λ
n
3 + · · ·+ ckλ

n
k

= rn[a1 cos nφ + a2 sin nφ] + c3λ
n
3 + · · ·+ ckλ

n
k

where a1 = c1 + c2 and a2 = (c1 − c2)i. Now, Let

cos ω =
a1√

a2
1 + a2

2

, sin ω =
a2√

a2
1 + a2

2

, ω = arctan(
a2

a1

)

The solution will be

xn = rn
√

a2
1 + a2

2[cos ω cos nφ + sin ω sin nφ] + c3λ
n
3 + · · ·+ ckλ

n
k

= rn
√

a2
1 + a2

2 cos (nφ− ω) + c3λ
n
3 + · · ·+ ckλ

n
k

= Arn cos (nφ− ω) + c3λ
n
3 + · · ·+ ckλ

n
k

where

A =
√

a2
1 + a2

2

r =
√

α2 + β2

φ = arctan(
β

α
)
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Example 1.7. Solve the difference equation

xn+3 − 4xn+2 + 6xn+1 − 4xn = 0

Solution:

The characteristic equation is

λ3 − 4λ2 + 6λ− 4 = 0

(λ− 2)(λ2 − 2λ + 2) = 0

The characteristic roots are: λ = 2, λ = 1 + i, and λ = 1− i. Therefore, the general

solution is

xn = c12
n + A(

√
2)n cos(n

π

4
− ω)

1.4.2 Solutions of kth order nonhomogeneous linear difference
with constant coefficients

The main idea of solving such difference equations is to find particular solution in

addition to homogeneous solution, and there are some techniques discussed in this

manner in [7].

Example 1.8. Find the general solution of

xn+2 − 3xn+1 + 2xn = 4n − n2

Solution:

Let x0, x1be two initial conditions. Then

xn = xhn + xpn
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where xn is the general solution.

xhn is the homogeneous solution.

xpn is the particular solution.

To find the homogeneous solution: solve the characteristic equation:

r2 − 3r + 2 = 0

r2 − 3r + 2 = (r − 1)(r − 2) = 0

⇒

r1 = 1, r2 = 2

Then, the homogeneous solution is:

xhn = arn
1 + brn

2

= a + b2n

To find particular solution, let xpn = c4n + dn2 + en + f

substituting this potential solution into the equation and equating coefficients as

following

xpn = c4n + dn2 + en + f

xpn+1 = c4n+1 + d (n + 1)2 + e (n + 1) + f

xpn+2 = c4n+2 + d (n + 2)2 + e (n + 2) + f

Hence, we get

c4n+2+d(n+2)2+e(n+2)+f−3(c4n+1+d(n+1)2+e(n+1)+f)+2c4n+dn2+en+f = 4n−n2
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after doing simple algebraic calculations, we get

6c4n − 2dn + d− e = 4n − n2

⇒ 6c = 1 ⇒ c = 1
6

⇒ −2d = 0 ⇒ d = 0

⇒ d− e = 0 ⇒ e = 0

Thus, the general solution of the equation is:

xn = a + b (2)n +
1

6
4n

To find the values of constants a and b the initial conditions x0, x1 must be

provided.

1.5 Solution of Nonlinear Difference Equations

In fact, most of Difference Equations arise from real applications are nonlinear. And

most nonlinear difference equations cannot be solved explicitly. However, some of the

nonlinear difference equations can be transformed into linear difference equations by

change of variable techniques [7].

In this section we introduce a few types of linear transformation techniques.

Type 1. Equations of Riccati type

xn+1xn + p(n)xn+1 + q(n)xn = 0 (1.8)
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The change of variable zn = 1
xn

transform the Riccati equation (1.8) to the

linear difference equation

q(n)zn+1 + p(n)zn + 1 = 0 (1.9)

The nonhomogeneous equation of Riccati type

xn+1xn + p(n)xn+1 + q(n)xn = g(n) (1.10)

requires a different transformation. Let yn = zn+1

zn
− p(n) and substitute it in

Eq.(1.10) to get

zn+2 + (q(n)− p(n + 1))zn+1 − (g(n) + p(n)q(n))zn = 0 (1.11)

Example 1.9. Solve the difference equation

xn+1xn − xn+1 + xn = 0

Solution:

The equation is Riccati type and we can solve it By letting xn = 1
zn

. This

gives us the equation

zn+1 = zn − 1

which is first order linear difference equation whose solution is given by

zn = c− n

therefore,

xn =
1

c− n
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Type 2. Equations of general Riccati type:

xn+1 =
a(n)xn + b(n)

c(n)xn + d(n)
(1.12)

such that c(n) 6= 0, a(n)d(n)− b(n)c(n) 6= 0 for all n ≥ 0.

Let

c(n)xn + d(n) =
yn+1

yn

then

xn =
yn+1

c(n)yn

− d(n)

c(n)

Substitute it in (1.12) to obtain

yn+2

c(n + 1)yn+1

− d(n + 1)

c(n + 1)
=

a(n) + [ yn+1

c(n)yn
− d(n)

c(n)
] + b(n)

yn+1

yn

By simplifying the above equation, we get

yn+2 + p1(n)yn+1 + p2(n)yn = 0, (1.13)

y(0) = 1, y1 = c(0)x0 + d(0)

Where

p1(n) = −c(n)d(n + 1) + a(n)c(n + 1)

c(n)

p2(n) = (a(n)d(n)− b(n)c(n))
c(n + 1)

c(n)
.

Example 1.10. Solve the difference equation

xn+1 =
2xn + 3

3xn + 2

Solution:
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Here a = 2, b = 3, c = 3, and d = 2. Hence ad− bc 6= 0. By using the

transformation

3xn + 2 =
yn+1

yn

(1.14)

we obtain the following homogeneous linear difference equation

yn+2 − 4yn+1 − 5yn = 0, y0 = 1, y1 = 3x0 + 2

And its characteristic equation is

λ2 − 4λ− 5 = 0

hence, the characteristic roots λ1 = 5, λ2 = −1.

Hence

yn = c15
n + c2(−1)n.

By using formula (1.14), we have

xn =
1

3

yn+1

yn

− 2

3

=
1

3

c15
n+1 + c2(−1)n+1

c15n + c2(−1)n
− 1

3

=
c15

n − c2(−1)n

c15n + c2(−1)n

=
5n − c(−1)n

5n + c(−1)n
,

where c = c1
c2

.
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Type 3. Homogeneous difference equation of the type

f(
xn+1

xn

, n) = 0 (1.15)

Use the transformation zn = xn+1

xn
to convert such an equation to a linear in zn,

which is can be solved easily.

Example 1.11. Solve the following difference equation

x2
n+1 − 3xn+1xn + 2x2

n = 0 (1.16)

Solution: By dividing over x2
n, the equation (1.16) will be

(
xn+1

xn

)2 − 3(
xn+1

xn

) + 2 = 0

By letting

zn =
xn+1

xn

we get the following equation

z2
n − 3zn + 2 = 0

and the last equation can be broken by factorizing to

(zn − 2)(zn − 1) = 0

Thus, either
zn = 2

or
zn = 1

Hence, we get the following solution:

xn+1 = 2xn

or
xn+1 = xn

consequently
xn = 2nx0

or
xn = x0
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Type 4. Consider the difference equation of the form

((xn+k)
r1)((xn+k−1)

r2)...((xn)rk+1) = g(n) (1.17)

The change of variable zn = ln x(n) transform Eq.(1.17) to

r1zn+k + r2zn+k−1 + ... + rk+1zn = ln g(n) (1.18)

Example 1.12. Solve the difference equation

xn+2 =
x2

n+1

x2
n

(1.19)

Solution:

Let zn = ln xn, then substitute in xn = ezn Eq.(1.19) we obtain

zn+2 − 2zn+1 + 2zn = 0

which is second order linear difference equation and its characteristic equation

is

λ2 − 2λ + 2 = 0

The characteristic roots are λ1 = 1 + i, λ2 = 1− i. Thus

zn = (
√

2)n[c1 cos(
nπ

4
) + c2 sin(

nπ

4
)].

Therefore,

xn = exp[(
√

2)n{c1 cos(
nπ

4
) + c2 sin(

nπ

4
)}]
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1.6 Behavior of Solutions of Difference Equations

In this section we will try to determine the behavior of solution of difference equations

in view of theoretical and computational approach. Moreover the difference equations

have a complete theory in one dimension, so we will list all definitions and theorems

with illustration examples. These examples have been chosen to help the reader to

understand the notions and terminologies that have been used in next chapters. For

this purpose we concentrate our investigation to the first order difference equations.

As we mentioned we are particularly interested in the asymptotic behavior of solu-

tions, that is, the behavior of the solution as n → ∞. However, our research only

looks at simple models, which can be easily solved analytically. This approach has

two advantages: first, most of us are familiar with these models and can obtain their

analytical or exact solutions in addition to numerical solutions for these models which

can be obtained using Matlab and Maple. Second, the comparison between analyt-

ical and numerical results help us understand the power and the limits of numerical

solutions.

Consider a map f : < → < where < is the set of real numbers. Then the (

positive) orbit O(x0) of point x0 ∈ < is defined to be the set of points

O(x0) = {x0, f(x0), f
2(x0), f

3(x0), · · · }
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1.6.1 Equilibrium Points of Difference Equations

Let us consider the difference equation

xn+1 = f(xn) (1.20)

Definition 1.3. [8] A point x is said to be a fixed point of the map f or an
equilibrium point of the Eq. (1.20) if f(x) = x.

Example 1.13. Determine the fixed points of the following function

f(x) = x2 − 4x + 6

Solution: We can find the fixed points by solving the following equation:

f(x) = x

then, we get
x2 − 4x + 6 = x

hence
x2 − 5x + 6 = 0

then
(x− 2)(x− 3) = 0

hence, there are two fixed points

x = 2 and x = 3

Example 1.14. Find the Equilibrium points of the following difference equation

xn+1 = 2xn(1− xn)

Solution: Set
x = 2x(1− x)

by solving the previous equation, we get two equilibrium points

x = 0 and x =
1

2
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1.6.2 Stability Theory

One of the main objectives in the theory of dynamical systems is the study of the

behavior of orbits near fixed points, in other words, the behavior of solutions of a

difference equation near equilibrium points, such investigation is called Stability

theory, which will be one of our main focus henceforh. To do this investigation, we

begin by introducting the basic notions of stability.

Definition 1.4. [8] Let f : I −→ I where I is an interval in the set of real numbers
< and x be an equilibrium point of the difference equation

xn+1 = f(xn) (1.21)

then

1. The equilibrium point x of Eq. 1.21 is called stable if for every ε, there exists
δ such that if

|x0 − x| < δ

then
|xn − x| < ε

for all n ≥ 1, and all x ∈ I.

2. The equilibrium point x of Eq. 1.21 is called locally asymptotically stable
or (asymptotically stable) if is it stable and if there exist γ > 0 such that if

|x0 − x| < γ

and
lim

n→∞
xn = x

3. The equilibrium point x of Eq. 1.21 is called global attractor if for every

x0 ∈ I

then
lim

n→∞
xn = x
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4. The equilibrium point x of Eq. 1.21 is called global asymptotically stable
(or globally stable)if it is stable and is global attractor.

5. the equilibrium point x of Eq. 1.21 is called unstable if it is not stable

6. the equilibrium point x of Eq. 2.1 is called repller if there exists r > 0 such
that if x0 ∈ I and

|x0 − x| < r

then there exists N ≥ 1 such that

|xN − x| > r

Clearly, a repller is an unstable equilibrium point.

1.6.3 Graphical Iteration

One of the most effective graphical iteration methods to determine the stability of

fixed points is Cobweb diagram on the (xn, xn+1) or (fn(x0), f
n+1(x0)) plane. Cob-

web diagrams provide a relatively quick way of representing the repeated application

of an iterative function which are often used to simulate dynamics because iterative

functions are complicated to predict the results, and studying the numerical results

of applying the function again and again may not provide much insight into the

long-term behavior of the dynamical system.

To accomplish cobweb diagram, we draw the curve y = f(x) and the diagonal

y = x on the same plot.

We start at an initial point x0. Then we move vertically until we hit the graph

of f at the point (x0, f(x0)). We then travel horizontally to meet the line y = x at

the point (f(x0), f(x0)). This determines f(x0) on the x axis. to findf 2(x0), we move
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again vertically until we hit the graph of f at the point (f(x0), f
2(x0)), and then

we move horizontal to meet the line y = x at the point (f 2(x0), f
2(x0)). Continuing

this process, we can evaluate all of the points in the orbit of x0, namely, the set

{x0, f(x0), f
2(x0), · · · , fn(x0), · · · } or equivalently {x0, x1, x2, · · · , xn, · · · }

Definition 1.5. Let µ > 0, then the difference equation

xn+1 = µxn(1− xn) (1.22)

is called discrete Logistic difference equation. And the function

fµ(x) = µx(1− x)

is called Logistic Map.

Example 1.15. Consider the difference equation xn+1 = µxn(1− xn) for µ = 2 and
µ = 3.6

1. Fined fixed points

2. Obtain numerical solution of the difference equation.

3. Determine the stability of fixed points by using Cobweb diagram.

Solution: To find the fixed points of fµ, we solve the equation µx(1 − x) = x.

This yields two equilibrium (fixed) points : x1 = 0 and x2 = µ−1
µ

.

• When µ =2.8. The two fixed points are: x1 = 0 and x2 = 0.6429.

And the stability can be achieved from Cobweb diagram, see Fig.(1.2).

• When µ =3.55. The two fixed points are: x1 = 0 and x2 = 0.7183. Observe

that the solution of xn+1 = 3.55x(1− x) does not converges, see Fig.(1.3). And

from Cobweb diagram the equilibrium point x2 is unstable, see Fig.(1.4).
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Figure 1.1: Solution of xn+1 = 2.8x(1− x), x0 = 0.1
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Figure 1.2: 1 < µ < 3, x2 is asymptotically stable.
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Figure 1.3: Solution of xn+1 = 3.55x(1− x), x0 = 0.1
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Figure 1.4: µ > 3, x2 is unstable.
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1.7 Criteria for Stability

In this section, we are going to introduce some powerful criteria for local stability of

equilibrium(fixed) points. Equilibrium points are divided into two types: hyperbolic

and non hyperbolic. A fixed point x of a map f is said to be hyperbolic if |f ′(x)| 6= 1.

Otherwise it is non hyperbolic.

Theorem 1.16. [8] (Criteria for Stability) Let x be a hyperbolic fixed point of a map
f , where f is continuously differentiable at x. The following statements then holds
true:

1. If |f ′(x)| < 1, then the equilibrium point x of Eq. 1.21 is asymptotically stable.

2. If |f ′(x)| > 1, then the equilibrium point x of Eq. 1.21 is un stable.

In Example 1.15, there are two fixed points :

x1 = 0 and x2 =
µ− 1

µ

Observe that f ′(x) = µ(1− 2x)

• x1=0. Thus f ′(0) = µ, and hence x1 = 0 is stable when 0 ≤ µ < 1, and unstable

when µ > 1

• x2 = µ−1
µ

. Thus f ′(x2) = 2−µ, and hence by theorem 1.16, x2 is asymptotically

stable if |2 − µ| < 1. Solving the latter inequality for µ, we obtain 1 < µ < 3.

and x2 is unstable if µ < 1 and µ > 3. When µ = 1, f ′(x2) = 1, and µ = 3,

f ′(x2) = −1. These two cases will discuss next.
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The stability criteria when x is non hyperbolic is summarized in the next two theo-

rems. The following theorem treats the case when f ′(x) = 1

Theorem 1.17. [8] Let x be a non hyperbolic fixed point f ′(x) = 1 of a map f , where
f ′ is continuous . The following statements then holds true:

• If f ′′(x) 6= 0, then x is unstable.

• If f ′′(x) = 0 and f ′′′(x) > 0, then x is unstable.

• If f ′′(x) = 0 and f ′′′(x) < 0, then x is asymptotically stable.

The preceding theorem may be used to establish stability criteria for the case

when f ′(x) = −1. But before doing so, we need to introduce the notion of Schwarzian

derivative.

Definition 1.6. (The Schwarzian derivative). Sf of a function is gevin by

Sf =
f ′′′(x)

f ′(x)
− 3

2
[
f ′′(x)

f ′(x)
]2

Theorem 1.18. Let x be a fixed point of a map f and f ′(x) = −1. If f ′′′(x) is
continuous, then the following statements hold:

• If Sf(x) < 0, then x is asymptotically stable.

• If Sf(x) > 0, then x is unstable.



Chapter 2

Preliminary and Basic Theory Of
Rational Difference Equations

2.1 Rational Difference Equations

The general form for the rational difference equation is :

xn+1 =
a0 + a1x1 + a2x2 + · · ·+ akxk

b0 + b1x1 + b2x2 + · · ·+ blxl

where the parameters a0, a1, · · · , am, b0, · · · , bm are positive real numbers and the

initial conditions x1, · · · , xm are nonnegative real numbers where m = max{k, l}.

The study of rational difference equations of order greater than one is quite challeng-

ing and rewarding, and the results about these equations offer prototypes towards

the development of the basic theory of the global behavior of solutions of nonlinear

difference equations of order greater than one. The techniques and results about these

equations are also useful in analyzing the equations in the mathematical models of

various biological systems and other applications.

The study of properties of rational difference equations has been an area of intense

36
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interest in recent years and reference therein. [11]. Ladas and Kulenovic in [11] have

discussed the dynamics of second order rational difference equations.In this research

we will investigate the following kth order difference equation:

xn+1 =
α + βxn + γxn−k

Bxn + Cxn−k

Solution of any difference equation depends on both parameters and initial conditions.

Solution of Kth order rational difference equation may exhibit one or

more of the following characteristics:

• The solution converges to an equilibrium point.

• The solution converges to aperiodic solution.

• The solution contain one or more unbounded subsequences.

• The solution is bounded but does not converge to an equilibrium point.

• Every solution is periodic with the same period.

2.2 Definitions

Here, we list some definitions which will be useful in our investigation.

Proposition 2.1. [3] Let I be some interval of real numbers and let

f : I × I −→ I

be a continuous differentiable function. Then for every set of initial conditions x−k, · · · , x−1, x0 ∈
I, the difference equation

xn+1 = f(xn, xn−k), n = 0, 1, · · · (2.1)

has a unique solution {xn}∞n=−k
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Definition 2.1. [16] A point is x is called an equilibrium point of equation ( 2.1) if

x = f(x, x)

that is
xn = x

for n ≥ 0 is a solution of equation (2.1), or equivalently, x is a fixed point of f .

Definition 2.2. (Periodicity)

1. A solution {xn}∞n=−k of a difference equation is said to be periodic with period
p if xn+p = xn for all n ≥ −k.

2. A solution {xn}∞n=−k of a difference equation is said to be periodic with prime
period p or p-cycle if it is periodic with period p and p is the least positive
integer for which xn+p = xn holds.

Definition 2.3. [16] Let x be an equilibrium point of Eq.(2.1), and assume that I
is an interval of real numbers. Then

1. The equilibrium point x of Eq. 2.1 is called stable if for every ε, there exists δ
such that if

x−k, · · · x−1, x0 ∈ I

and
|x−k − x|+ |x−k+1 − x|+ · · ·+ |x0 − x| < δ

then
|xn − x| < ε

for all n ≥ −k

2. The equilibrium point x of Eq. 2.1 is called locally asymptotically stable if
it is stable and if there exist γ > 0 such that if

x−k, · · · x−1, x0 ∈ I

and
|x−k − x|+ |x−k+1 − x|+ · · ·+ |x0 − x| < γ

then
lim

n→∞
xn = x
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3. The equilibrium point x of Eq. 2.1 is called global attractor if for every

x−k, · · · x−1, x0 ∈ I

we have
lim

n→∞
xn = x

4. The equilibrium point x of Eq. 2.1 is called globally asymptotically stable
if it is stable and is a global attractor.

5. The equilibrium point x of Eq. 2.1 is called unstable if it is not stable

6. The equilibrium point x of Eq. 2.1 is called repeller if there exists r > 0 such
that if x−k, · · ·x−1, x0 ∈ I and

|x−k − x|+ |x−k+1 − x|+ · · ·+ |x0 − x| < γ

then there exists N > −k such that

|xN − x| > r

Clearly, a repller is an unstable equilibrium.

Definition 2.4. [16](Linearization)
Let a = ∂f

∂x
(x, x) and b = ∂f

∂y
(x, x) where f(x, y) is the function in Eq.( 2.1) and x

is the equilibrium of Eq.( 2.1). Then the equation

zn+1 = azn + bzn−k, n = 0, 1, · · · (2.2)

is called linearized equation associated with Eq.(2.1) about the equilibrium point
x, and its characteristic equation is

λk+1 − aλk − b = 0 (2.3)

2.3 Theorems

Theorem 2.2. [16] (Linearized Stability)

1. If all the roots of Eq.(2.3) lie in open disk |λ| < 1, then the equilibrium point x
of Eq.(2.1) is asymptotically stable.

2. If at least one root of Eq.(2.3) has absolute value greater than 1, then the equi-
librium x of Eq.(2.1) is unstable
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Theorem 2.3. [3] Assume a, b ∈ R and k ∈ {1, 2, · · · }. Then

|a|+ |b| < 1 (2.4)

is sufficient condition for asymptotic stability of the difference equation

xn+1 − axn + bxn−k = 0, n = 0, 1, 2, · · · (2.5)

suppose in addition that one of the following two cases holds:

1. k is odd and b < 0 .

2. k is even and ab < 0.

Then 2.4 is a necessary condition for asymptotic stability of Eq.(2.5)

Theorem 2.4. [15] The difference equation

yn+1 − byn + byn−k = 0, n = 0, 1, 2, ...

is asymptotically stable iff 0 < |b| < 1
2
cos( π

k+2
)

Theorem 2.5. [11] consider the difference equation ( 2.1). Let I = [a, b] be some
interval of real numbers and assume that

f : [a, b]× [a, b] → [a, b]

is continuous function satisfying the following properties:

1. f(x, y) is non increasing in x for each y ∈ [a, b] and f(x, y) is non increasing
in y for each x ∈ [a, b]

2. If (m,M) ∈ [a, b]× [a, b] is a solution of the system

m = f(M,M)

M = f(m,m)

then m = M .

3. The equation f(x, x) = x has a unique positive solution.

Then Eq.( 2.1) has a unique positive solution and every positive solution of Eq.( 2.1)
converges to x.
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Proof. set m0 = a and M0 = b. for i = 1, 2, 3, · · ·
mi = f(Mi−1, Mi−1)andMi = f(mi−1,mi−1)

Then
m1 = f(M0,M0) ≥ a = m0 and M1 = f(m0,m0) ≤ b = M0

and
m2 = f(M1, M1) ≥ f(M0, M0) = m1 ≥ m0

M2 = f(m1,m1) ≤ f(m0,m0) = M1 ≤ M0

By induction, we have

m0 ≤ m1 · · ·mi ≤ · · · ≤ Mi ≤ · · · ≤ M1 ≤ M0

Also
xn+1 = f(xn, xn−k) ≤ f(m0,m0) = M1

xn+1 = f(xn, xn−k) ≥ f(M0,M0) = m1

and
xn+1 = f(xn, xn−k) ≤ f(m1,m1) = M2

xn+1 = f(xn, xn−k) ≥ f(M1,M1) = m2

By induction, we have

mi ≤ xn ≤ Mi, n ≥ (i− 1)k + i

set
m = lim

i→∞
mi and M = lim

i→∞
Mi

then we have
m ≤ lim

i→∞
inf xi ≤ lim

i→∞
sup xi ≤ M

By continuity of f
m = f(M,M) and M = f(m,m)

by assumption (2)
m = M = x

Theorem 2.6. [11] Let I be an interval of real numbers and assume

f : [a, b]× [a, b] → [a, b]

is continuously function satisfying the following properties
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1. f(x, y) is non decreasing in x for each y ∈ [a, b] and f(x, y) is non increasing
in y for each x ∈ [a, b]

2. If (m,M) ∈ [a, b]× [a, b] is a solution of the system

m = f(m,M)

M = f(M,m)

then m = M .

Then Eq.(2.1) has a unique equilibrium x ∈ [a, b] and every solution of Eq.(2.1)
converges to x

Proof. set
m0 = a and M0 = b

for each i = 1, 2, 3, · · ·

mi = f(mi−1,Mi−1) and Mi = f(Mi−1,mi−1)

Then
m1 = f(m0,M0) ≥ a = m0 and M1 = f(M0,m0) ≤ b = M0

and
m2 = f(m1, M1) ≥ f(m0,M0) = m1 ≥ m0

M2 = f(M1,m1) ≤ f(M0,m0) = M1 ≤ M0

By induction, we have

m0 ≤ m1 · · ·mi ≤ · · · ≤ Mi ≤ · · · ≤ M1 ≤ M0

Also
xn+1 = f(xn, xn−k) ≤ f(M0,m0) = M1

xn+1 = f(xn, xn−k) ≥ f(m0,M0) = m1

and
xn+1 = f(xn, xn−k) ≤ f(M1,m1) = M2

xn+1 = f(xn, xn−k) ≥ f(m1,M1) = m2

By induction, we have

mi ≤ xn ≤ Mi, n ≥ (i− 1)k + i
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set
m = lim

i→∞
mi and M = lim

i→∞
Mi

then we have
m ≤ lim

i→∞
inf xi ≤ lim

i→∞
sup xi ≤ M

By continuity of f
m = f(m,M) and M = f(M,m)

therefore in view of (2)
m = M = x

Theorem 2.7. [5] Consider

yn+1 = f(yn, yn−k), n = 0, 1, 2, ...

where k ∈ {1, 2, ...}. Let I = [a, b] be some interval of positive real numbers and
assume that

f : [a, b]× [a, b] → [a, b]

is continuous function satisfying the following properties :

1. f(u, v) is nonincreasing in u and nondecreasing in v.

2. If (m,M) ∈ [a, b] is a solution of the system

m = f(M, m) and M = f(m,M)

Then
m = M

Then the equation yn+1 = f(yn, yn−k) has a unique positive equilibrium y and
every solution converges to y.

Theorem 2.8. Assume that f ∈ C [(0,∞)× (0,∞), (0,∞)] is such that : f(x, y) is
decreasing in x for each fixed y.and f(x, y) is increasing in y for each fixed x. Let x
be a positive equilibrium of equation ( 2.1) then except possibly for the first semicycle,
every oscillatory solution of equation (2.1) has semicycle of length k

Proof. When k = 1, the proof is presented as Theorem1.7.1 in [11]. When k = 2,
the proof is presented as Theorem4 in [1]. We just give the proof of the theorem for
k = 3. The other cases for k ≥ 4 are similar and can be omitted.
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Let {xn} be a solution of equation( 2.1) with at least four semicycles. Then there
exists N > 0 such that either

xN−1 < x ≤ xN+2

or
xN−1 ≥ x > xN+2

we will assume that :
xN−1 < x ≤ xN+2

other cases is similar and will be omitted. The by using monotonic character of f(x, y)
we have

xN+3 = f(xN+2, xN−1) < f(x, x) = x

and
xN+4 = f(xN+3, xN) > f(x, x) = x

thus
xN+3 < x < xN+4

The proof is complete. ¤

Theorem 2.9. Assume that f ∈ C [(0,∞) × (0,∞), (0,∞)] and that : f(x, y) is
decreasing in both arguments. Let x be a positive equilibrium of equation ( 2.1) then
every oscillatory solution of equation ( 2.1) has semicycle of length at most k.

Proof. When k = 1, the proof is presented as Theorem1.7.2 in [11]. We just give the
proof of the theorem for k = 2. The other cases for k ≥ 3 are similar and can be
omitted. Assume that {xn} is an oscillatory solution with three consecutive terms
xN−1, xN−1, xN+1 in a positive semicycle

xN−2 ≥ x, xN−1 ≥ x, xN ≥ x

with at least one of the inequalities being strict. The proof in the case of negative
semicycle is similar and is omitted.

Then by using the decreasing character of f . We obtain

xN+2 = f(xN+1, xN−1) < f(x, x) = x

which completes the proof.
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For k = 3 assume that {xn} is an oscillatory solution with four consecutive terms
xN−1, xN , xN+1, xN+2 in a negative semicycle

xN−1 ≤ x, xN ≤ x, xN+1 ≤ x, xN+2 ≤ x

with at least one of the inequalities being strict. The proof in the case of positive
semicycle is similar and is omitted. Then by using the decreasing character of f . We
obtain

xN+3 = f(xN+2, xN−1) > f(x, x) = x

which completes the proof.

Theorem 2.10. Assume that f ∈ C [(0,∞)× (0,∞), (0,∞)] is such that : f(x, y) is
increasing in x for each fixed y.and f(x, y) is decreasing in y for each fixed x. Let x be
a positive equilibrium of equation ( 3.3) then every oscillatory solution of equation
(3.3) has semicycle of length at least k

Proof. When k = 1, the proof is presented as Theorem1.7.4 in [11]. We just give
the proof of the theorem for k = 2.the other cases for k ≥ 3 are similar and can be
omitted.

Assume that {xn} is an oscillatory solution with three consecutive terms

xN−1, xN , xN+1

such that
xN−1 < x < xN+1

or
xN−1 > x > xN+1

we will assume that
xN−1 < x < xN+1

the other case is similar and will be omitted. Then by using decreasing character of
f we obtain

xN+2 = f(xN+1, xN−1) > f(x, x)

Now, if xN ≥ x then the result follows. Otherwise xN < x. Hence

xN+3 = f(xN+2, xN) > f(x, x) = x

which shows that it has at least three terms in the positive semicycle



Chapter 3

Dynamics of xn+1 =
α+βxn+γxn−k
Bxn+Cxn−k

In this chapter and chapter 5 we present the main part of this theses, that is studying

and investigating the difference equation

xn+1 =
α + βxn + γxn−k

Bxn + Cxn−k

, n = 0, 1, 2, · · · (3.1)

where where the parameters α, β, γ, B, C, and the initial conditions x−k, x−k+1, · · · , x0

are nonnegative real numbers, k = {1,2,3· · · }.

This chapter includes mathematical issues, and methodologies that used in such

monographs.

3.1 Change of variables

The change of variable

xn =
β

B
yn

reduces Eq.(3.1) to the difference equation

yn+1 =
p + yn + lyn−k

yn + qyn−k

, n = 0, 1, 2, 3, ... (3.2)

46
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where

p =
αB

β2
, q =

C

B
, l =

γ

β

with p, q ∈ (0,∞) and

yk, y−k+1, · · · , y−1, y0 ∈ (0,∞)

Proof. Since

xn =
β

B
yn

xn+1 =
β

B
yn+1

xn−k =
β

B
yn−k

substitute in the Eq.(3.1). We get

β

B
yn+1 =

α + β β
B

yn + γ β
B

yn−k

B β
B

yn + C β
B

yn−k

by pulling a common factor β
B

,

β

B
yn+1 =

β
B

(
B
β
α + β yn + γyn−k

)

β
B

(B yn + C yn−k)

hence

β

B
yn+1 =

β
(

B
β2 α + yn + γ

β
yn−k

)

B
(

yn + C
B

yn−k

)

Let

p =
αB

β2
, q =

C

B
, l =

γ

β

reduces the Eq.(3.1) to

yn+1 =
p + yn + lyn−k

yn + qyn−k

, n = 0, 1, 2, · · ·
The proof has been completed.
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3.2 Equilibrium Points

In this section we investigate the equilibrium point of the nonlinear difference equation

yn+1 =
p + yn + lyn−k

yn + qyn−k

, n = 0, 1, 2, · · · (3.3)

where the parameters p, q, l and the initial conditions y−k, y−k+1, · · · , y−1, y0 are

nonnegative real numbers, k = {1, 2, 3, · · · }. To find the equilibrium point in view of

its definition, we solve the following equation

ȳ =
p + ȳ + lȳ

ȳ + qȳ

by cross multiplication, we get

ȳ2(1 + q) = p + ȳ(1 + l) (3.4)

by rearranging the terms, we get

(1 + q)ȳ2 − (1 + l)ȳ − p = 0

now, we use the quadratic formula to solve the above equation

ȳ =
(1 + l)±

√
(1 + l)2 + 4p(1 + q)

2(1 + q)

Hence, the only positive equilibrium point of Eq.( 3.3) is:

ȳ =
(1 + l) +

√
(1 + l)2 + 4p(1 + q)

2(1 + q)
(3.5)
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3.3 Linearization

For our investigation. Let

f(u, v) =
p + u + lv

u + qv

is the function in Eq.( 3.3)

Definition 3.1. Linearized Equation The equation

zn+1 =
∂f

∂u
(ȳ, ȳ)zn +

∂f

∂v
(ȳ, ȳ)zn−k (3.6)

is called the linearized equation associated with Eq.( 3.3) about the equilibrium point
x

since

f(u, v) =
p + u + lv

u + qv

we have,

∂f

∂u
=

(u + qv)− (p + u + lv)

(u + qv)2

=
u + qv − p− u− lv

(u + qv)2

=
qv − lv − p

(u + qv)2

=
(q − l)v − p

(u + qv)2

and
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∂f

∂v
=

l(u + qv)− q(p + u + lv)

(u + qv)2

=
lu + lqv − pq − uq − lqv

(u + qv)2

=
lu− qu− pq

(u + qv)2

=
(l − q)u− pq

(u + qv)2

= −(q − l)u + pq

(u + qv)2

hence

∂f

∂u
(ȳ, ȳ) =

(q − l)ȳ − p

(ȳ + qȳ)2

=
(q − l)ȳ − p

ȳ2(1 + q)2

but, by rearranging Eq.( 3.4), we get

ȳ2 =
p + ȳ(1 + l)

1 + q
(3.7)

then

∂f

∂u
(ȳ, ȳ) =

(q − l)ȳ − p

(1 + q)2(p+ȳ(1+l)
1+q

)

=
(q − l)ȳ − p

(1 + q)(p + (1 + l)ȳ)
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now

∂f

∂v
(ȳ, ȳ) = −(q − l)ȳ + pq

(ȳ + qȳ)2

= −(q − l)ȳ + pq

ȳ2(1 + q)2

= − (q − l)ȳ + pq

(1 + q)2(p+ȳ(1+l)
1+q

)

= − (q − l)ȳ + pq

(1 + q)(p + (1 + l)ȳ)

The Linearized Equation associated with equation 3.3 about the equilibrium point

x is:

zn+1 =
(q − l)y − p

(1 + q)(p + (1 + l)y)
zn +− (q − l)y + pq

(1 + q)(p + (1 + l)y)
zn−k

i.e

zn+1 − (q − l)y − p

(1 + q)(p + (1 + l)y)
zn +

(q − l)y + pq

(1 + q)(p + (1 + l)y)
zn−k = 0 (3.8)

and its characteristic equation is :

λn+1 − (q − l)y − p

(1 + q)(p + (1 + l)y)
λn +

(q − l)y + pq

(1 + q)(p + (1 + l)y)
λn−k = 0 (3.9)

3.4 Local Stability

The aim of this section is to establish the stability of positive equilibrium point of

eq.( 3.3). In sections 3.2 and 3.3, We have fined that Eq.( 3.3) has the only positive

equilibrium point:

y =
(1 + l) +

√
(1 + l)2 + 4p(1 + q)

2(1 + q)
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and the linearized equation is given by:

zn+1 − (q − l)y − p

(1 + q)(p + (1 + l)y)
zn +

(q − l)y + pq

(1 + q)(p + (1 + l)y)
zn−k = 0

where

(q − l)y − p

(1 + q)(p + (1 + l)y)
= a,

(q − l)y + pq

(1 + q)(p + (1 + l)y)
= b

it is necessary to mention that the equilibrium point of Eq.( 3.3) is locally asymp-

totically stable for all values of the parameters p and q when k = 1.(see [6])

The following theorem is a direct consequence of theorems ( 2.2) and ( 2.3).

Theorem 3.1. The unique equilibrium point ȳ of eq. ( 3.3) is locally asymptotically
stable in the following cases :

1. q > l there are two cases

• l > 1 implies q > 1

• q < 1 & l < 1.

2. q < l

• if ȳ(l − q) < pq i.e. ȳ < pq
l−q

• if ȳ(l − q) > pq and ȳ < 2pq
l−3q−1−ql

i.e. ȳ > pq
l−q

and ȳ < 2pq
l−3q−1−ql

It is important to note that

• When k is odd and q < l. Then ȳ > pq
l−q

is necessary and condition for local

stability.

• When k is even and q > l. Then ȳ < p
q−l

is necessary and condition for local

stability.
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• When k is even and q < l. Then ȳ < pq
l−q

is necessary and condition for local

stability.

Proof. By theorem ( 2.3)

1. When q > l there are two cases:

• (q − l)ȳ > p i.e. ȳ > p
q−l

|a|+ |b| < 1

by substituting values of a and b , we have

(q − l)ȳ − p

(1 + q)(p + (1 + l)x)
+

(q − l)ȳ + pq

(1 + q)(p + (1 + l)ȳ)
< 1

then
(q − l)ȳ − p + (q − l)ȳ + pq

(1 + q)(p + (1 + l)ȳ)
< 1

by multiplying, we have

(q − l)ȳ − p + (q − l)ȳ + pq < (1 + q)(p + (1 + l)ȳ)

then
2(q − l)ȳ − p + pq < p + (1 + l)ȳ + pq + q(1 + l)ȳ

so
2(q − l)ȳ − 2p < ȳ(1 + l)(1 + q)

hence
−2p < ȳ[(1 + l)(1 + q)− 2(q − l)]

then
−2p < ȳ[1 + l + q + lq − 2q + 2l]

so
−2p < ȳ[1− q + 3l + lq]

note that when l > 1, then ȳ[1− q + 3l + lq] is strictly greater than zero.
And when q < 1, also implies ȳ[1− q + 3l + lq] is strictly greater than zero

• (q − l)ȳ < p, i.e ȳ < p
q−l

We have the following inequality :

p− (q − l)ȳ

(1 + q)(p + (1 + l)ȳ)
+

(q − l)ȳ + pq

(1 + q)(p + (1 + l)ȳ)
< 1



54

then
p− (q − l)ȳ + (q − l)ȳ + pq

(1 + q)(p + (1 + l)ȳ)
< 1

hence
p + pq < p + (1 + l)ȳ + pq + q(1 + l)ȳ

cancel the common terms in both sides, we get

0 < +(1 + l)ȳ + q(1 + l)ȳ

which is true for all values of l, q, x

2. When q < l
there are two cases:

• when ȳ < pq
l−q

|a| = (l−q)ȳ+p
(1+q)[p+(1+l)ȳ]

and |b| = pq−(l−q)ȳ
(1+q)[p+(1+l)ȳ]

=⇒
(l − q)ȳ + p

(1 + q)[p + (1 + l)ȳ]
+

pq − (l − q)ȳ

(1 + q)[p + (1 + l)ȳ]
< 1

⇒
(l − q)ȳ + p + pq − (l − q)ȳ

(1 + q)[p + (1 + l)ȳ]
< 1

⇒
p + pq

(1 + q)[p + (1 + l)ȳ]
< 1

⇒
p + pq < (1 + q)[p + (1 + l)ȳ]

⇒
p(1 + q) < (1 + q)[p + (1 + l)ȳ]

⇒
p < [p + (1 + l)ȳ]

=⇒
0 < (1 + l)ȳ
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• when ȳ > pq
l−q

|a| = (l−q)ȳ+p
(1+q)[p+(1+l)ȳ]

and |b| = (l−q)ȳ−pq
(1+q)[p+(1+lȳ]

(l − q)ȳ + p

(1 + q)[p + (1 + l)ȳ]
+

(l − q)ȳ − pq

(1 + q)[p + (1 + l)ȳ]
< 1

=⇒
(l − q)ȳ + p + (l − q)ȳ − pq

(1 + q)[p + (1 + l)ȳ]
< 1

=⇒
2(l − q)ȳ + p− pq < (1 + q)[p + (1 + l)ȳ]

=⇒

2 (l − q)ȳ + p − pq < p + (1 + l)ȳ + pq + q(1 + l)ȳ

=⇒
2 (l − q)ȳ − (1 + l)ȳ − q(1 + l)ȳ < 2pq

=⇒
2l ȳ − 2q ȳ − ȳ − l ȳ − qȳ − q l ȳ < 2pq

=⇒
l ȳ − 3q ȳ − ȳ − qlȳ < 2pq

=⇒
ȳ[l − 3q − 1− ql] < 2pq

=⇒

ȳ <
2pq

l − 3q − 1− ql

We have investigated the two cases q > l and q < l in previous theorem. The next

theorem about case q = l. When q = l the Eq.(3.3) becomes

yn+1 =
p + yn + qyn−k

yn + qyn−k

(3.10)

and the positive equilibrium point y =
1+q+

√
((1+q)2+4p(1+q))

2(1+q)
. Observe that y > 1.
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Theorem 3.2. Assume that q = l

1. Suppose that k is odd. Then the equilibrium point y of Eq.(3.10) is asymptoti-
cally stable.

2. Suppose that k is even. Then the equilibrium point y of Eq.(3.10) is asymptoti-
cally stable iff q = l.

Proof. Let f(x, y) = p+x+qy
x+qy

. Assume a = ∂f
∂x

(y, y) = −p
(1+q)[p+(1+q)y]

and b = ∂f
∂y

(y, y) =
−pq

(1+q)[p+(1+q)y]
. Observe that a < 0 and ab > 0. Then the proof is a direct sequence of

theorem 2.3. the proof is complete.

3.5 Invariant Intervals

The fundamental idea if invariant interval is widely understood, and for the sake

of clarity, we give the following definition which will be the key concepts in this

monograph.

Definition 3.2. [3](Invariant interval) An invariant interval for the difference equa-
tion ( 2.1) is an interval I with the property that if two consecutive terms of the
solution fall in I then all subsequence terms of the solution also belong to I. In
other words, I is an invariant interval for Eq.( 2.1) if xN−k+1, · · · , xN−1, xN ∈ I for
someN ≥ 0, then xn ∈ I for every n > N .

Theorem 3.3. Let {yn}∞n=−k be a solution of Eq.( 3.3). Then the following statements
are true:

1. Suppose p + l < q and assume that for some N > 0,

yN−k, yN−k+1, · · · , yN ∈ [
p + l

q
, 1]

then yn ∈ [p+l
q

, 1] for all n > N

2. Suppose p + l > q and assume that for some N > 0,

yN−k, yN−k+1, · · · , yN ∈ [1,
p + l

q
]

then yn ∈ [1, p+l
q

] for all n > N
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Proof. 1. The basic ingredient behind the proof is the fact that when u, v ∈
[p+l

q
,∞), the function

f(u, v) =
u + p + lv

u + qv

is increasing in u and decreasing in v. If for some N > 0 , p+l
q
≤ yN−k, yN−k+1, · · · , yN ≤

1 then

yN+1 =
p + yN + lyN−k

yN + qyN−k

≤ p + yN + l

yN + q p+l
q

= 1

and

yN+1 =
p + yN + lyN−k

yN + qyN−k

≥
p+l
q

+ p + l
p+l
q

+ q

=
(p + l)[1

q
+ 1]

q[1 + 1
q

p+l
q

]

>
p + l

q

The proof is follow by induction.

2. If for some N > 0 , 1 ≤ yN−k, yN−k+1, · · · , yN ≤ p+l
q

then
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yN+1 =
p + yN + lyN−k

yN + qyN−k

≤
p+l
q

+ p + l

1 + q

=
(p + l)[1

q
+ 1]

q[1
q

+ 1]

=
p + l

q

and

yN+1 =
p + yN + lyN−k

yN + qyN−k

≥ yN + p + l

yN + q[p+l
q

]

= 1

and the proof follows by induction.
The proof is complete.

3.6 Existence of two cycles

In this section we give the necessary and sufficient conditions for Eq.( 3.3) to have

a prime period-two solution and we exhibit all prime period-two solutions of the

Eq.( 3.3).
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Definition 3.3. Let {xn}∞n=−k be a solution of Eq.( 3.3). We say the solution has a
prime period two if the solution eventually take the form:

· · · , φ, ψ, φ, ψ, φ, ψ, · · ·

where φ, ψ are distinct and positive.

Theorem 3.4. Two cycles theorem

1. The Eq.( 3.3) has no nonnegative prime period two if

(a) k is even.

(b) k is odd and l ≤ 1.

(c) k is odd, and q ≥ 1.

2. If k is odd and l > 1 and q < 1, then the Eq.( 3.3) has prime period two solution
· · · , φ, ψ, φ, ψ, φ, ψ, · · · where the values of φ and ψ(positive and distinct) are
solutions of quadratic equation :

r2 − l − 1

q
r +

pq + l − 1

q(1− q)
= 0

provided the solution exists.

Proof. 1. Assume for the sake of contradiction that there exist distinctive and
positive real numbers φ and ψ such that

· · · , φ, ψ, φ, ψ, φ, ψ, · · ·

is a prime period two solution of Eq.(3.3).there are two cases to be considered

(a) k is even in this case φ and ψ satisfy

φ =
p + ψ + lψ

ψ + qψ

and

ψ =
p + φ + lφ

φ + qφ
so

φψ(1 + q) = p + φ + lφ (3.11)

φψ(1 + q) = p + ψ + lψ (3.12)

by subtracting Eq.( 3.12)from Eq.( 3.11), we have
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0 = p + φ + lφ− p− ψ − lψ

0 = φ− ψ + l(φ− ψ)

0 = (φ− ψ)(1 + l)

that implies φ = ψ which contradicts the assumption φ 6= ψ

(b) k is odd in this case φ and ψ satisfy

φ =
p + ψ + lφ

ψ + qφ

and

ψ =
p + φ + lψ

φ + qψ

by multiplying, we get

φψ + qφ2 = p + ψ + lφ (3.13)

φψ + qψ2 = p + φ + lψ (3.14)

by subtracting Eq.( 3.14) from Eq.( 3.13), we have

qφ2 − qψ2 = ψ + lφ− φ− lψ

q(φ− ψ)(φ + ψ) = lφ− lψ + ψ − φ

q(φ− ψ)(φ + ψ) = l(φ− ψ)− (φ− ψ)

q(φ− ψ)(φ + ψ) = (φ− ψ)(l − 1)

⇒

φ + ψ =
l − 1

q
(3.15)

observe that if l ≤ 1 then φ+ψ ≤ 0 which contradicts the hypothesis that
φ, ψ are positive and distinctive.and this proves case (1 b).

(c) Adding Eq.( 3.13)and Eq.( 3.14), we have:
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2φψ + qφ2 + qψ2 = 2p + φ + ψ + lφ + lψ

2φψ + q(φ2 + ψ2) = 2p + φ + ψ + l(φ + ψ)

2φψ + q(φ2 + ψ2 + 2φψ − 2φψ) = 2p + φ + ψ + l(φ + ψ)

2φψ − 2qφψ + q(φ2 + ψ2 + 2φψ) = 2p + (1 + l)(φ + ψ)

φψ(2− 2q) + q(φ + ψ)2 = 2p + (1 + l)(
l − 1

q
)

φψ(2− 2q) + q(
l − 1

q
)2 = 2p + (1 + l)(

l − 1

q
)

φψ(2− 2q) = 2p + (1 + l)(
l − 1

q
)− q(

l − 1

q
)2

φψ(2− 2q) = 2p + (1 + l)(
l − 1

q
)− (l − 1)2

q

φψ(2− 2q) = 2p +
(l − 1)[(l + 1)− (l − 1)]

q

φψ(2− 2q) = 2p +
2(l − 1)

q

φψ(2− 2q) =
2pq + 2(l − 1)

q

φψ =
2pq + 2(l − 1)

q(2− 2q)

thus

φψ =
pq + (l − 1)

q(1− q)
(3.16)

observe that if q > 1 then ψφ < 0 which contradicts the hypothesis that
φandψ are positive and distinctive.

2. If q < 1 and l > 1, then we have Eq.( 3.15)and Eq.( 3.16). Now, construct the
quadratic equation:

r2 − l − 1

q
r +

pq + (l − 1)

q(1− q)
= 0

hence, the values of φ and ψ are the solutions of the above quadratic equation.
i.e.

r =

l−1
q
±

√
( l−1

q
)2 − 4pq+(l−1)

q(1−q)

2
the proof is complete.
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3.7 Analysis of Semicycle and oscillation

We strongly believe a semicycle analysis of the solutions of a scalar difference equation

is a powerful tool for a detailed understanding of the solutions and often leads to

straightforward proofs of their long term behavior.

In this section, we investigate semicycles and we present some results about the

semicycle character of solutions of the difference equation ( 2.1) under appropriate

hypotheses on the function f .

Definition 3.4. [15] Semicycle: Let {yn}∞n=−k be a solution of equation ( 2.1) and ȳ
be a positive equilibrium point. We now give the definitions of positive and negative
semicycle of a solution of equation ( 2.1) relative to the equilibrium point ȳ

• A positive semicycle of a solution {yn}∞n=−k of equation ( 2.1) consists of a
”string” of terms {yl, yl+1, · · · , ym}, all greater than or equal to the equilibrium
ȳ, with l ≥ −k and m ≤ ∞ and such that

either l = −k, or l > −k and xl−1 < ȳ

and
either m = ∞, or m < ∞ and ym+1 < ȳ

• A negative semicycle of a solution {yn}∞n=−k of equation ( 2.1) consists of a
”string” of terms {yl, yl+1, · · · , ym}, all less than to the equilibrium ȳ, with
l ≥ −k and m ≤ ∞ and such that

either l = −k, or l > −k and xl−1 ≥ ȳ

and
either m = ∞, or m < ∞ and ym+1 ≥ ȳ

The first semi-cycle of a solution starts with the term yk and is positive if yk ≥ ȳ

and negative if y−k < ȳ.

Definition 3.5. [11]( Oscillation )
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1. A sequence {xn} is said to oscillate about zero or simply to oscillate if
the terms xn are neither eventually all positive nor eventually all negative.
Otherwise the sequence is called nonoscillatory. A sequence is called strictly
oscillatory if for n0, there exist n1, n2 ≥ n0 such that xn1xn2 < 0.

2. A sequence xn is said to oscillate about x if the sequence xn − x oscillate.
The sequence xn is called strictly oscillatory about x if the sequence xn− x
is strictly oscillatory.

Again The aim of this section is to present the analysis of semicycles of solution

of Eq.(3.3) relative to equilibrium point ȳ and based on invariant interval of Eq.( 3.3)

and based on nondecreasing and nonincreasing of the function f(x, y) = p+x+l y
x+q y

.

Let {yn}∞n=−k be a solution of Eq.( 3.3). Then observe that the following identities

are true:

yn+1 − 1 = (q − l)[

p
q−l

− yn−k

yn + qyn−k

] (3.17)

yn+1 − (
p + l

q
) =

(1− p+l
q

)yn + p(1− yn−k)

yn + qyn−k

(3.18)

We will analyze the solution {yn}∞n=−k under three assumptions:

First, will analyze the solution {yn}∞n=−k under assumption that

p + l > q and q > l (3.19)

So we have the following consequence which can be resulted directly by using

Eq.( 3.17) and Eq.(3.18)

Lemma 3.1. Assume that ( 3.19) holds and let {yn}∞n=−k be a solution of
Eq.( 3.3). Then the following statements are true :

1. If for some N ≥ 0, yN−k < p+l
q

. Then yN+1 > 1.
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2. If for some N ≥ 0, yN−k = p+l
q

. Then yN+1 = 1.

3. If for some N ≥ 0, yN−k > p+l
q

. Then yN+1 < 1.

4. If for some N ≥ 0, yN−k ≥ 1. Then yN+1 ≤ p+l
q

.

5. If for some N ≥ 0, yN−k ≤ 1. Then yN+1 ≥ 1.

6. If for some N ≥ 0, 1 ≤ yN−k ≤ p+l
q

, then 1 ≤ yN+1 ≤ p+l
q

.

7. If for some N ≥ 0, 1 ≤ yN−k, · · · , yN−1, yN ≤ p+l
q

, then yn ∈ [1, p+l
q

] for

n ≥ N that is [1, p+l
q

] is an invariant interval for Eq.( 3.3).

8. 1 < y < p+l
q

.
Indeed: when p + l > q

p + l > q
pl + l2 > ql
pq + pl + l2 > lq + pq
pq > pq + lq − lp− l2

pq > (p + l)(q − l)
then we have :

p

q − l
>

p + l

q
(3.20)

The next result which is a consequence of Theorem 2.9 express that when (3.19)

holds, every nontrivial and oscillatory solution of Eq.( 3.3) which lies in the

interval [1, p+l
q

] oscillates about equilibrium point ȳ with semicycle of length at

most k.

Theorem 3.5. Assume Eq.( 3.19) holds. Then every nontrivial and oscillatory
solution of Eq.( 3.3) which lies in the interval [1, p+l

q
] oscillates about ȳ with

semicycles of length at most k.

Second, we will discuss the analysis of semicycles of solution {yn}∞n=−k under as-

sumption that

p + l < q, q > l (3.21)

The following result is a direct consequence of Eq.(3.17) and Eq.(3.18).
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Lemma 3.2. Assume 3.21 holds and let {yn}∞n=−k be a solution of Eq.( 3.3).
Then the following statements are true:

1. If for some N ≥ 0, yN−k > p+l
q

then yN+1 < 1

2. If for some N ≥ 0, yN−k = p+l
q

then yN+1 = 1

3. If for some N ≥ 0, yN−k ≤ 1 then yN+1 > p+l
q

4. If for some N ≥ 0, yN−k ≤ p+l
q

then yN+1 > p+l
q

5. If for some N ≥ 0, p+l
q
≤ yN−k ≤ 1 then p+l

q
≤ yN+1 ≤ 1

6. If for some N ≥ 0, p+l
q
≤ yN−k, · · · , yN−1, yN ≤ 1, then yn ∈ [p+l

q
, 1] for

n ≥ N .

7. p+l
q

< ȳ < 1.
Indeed: when p + l < q

p + l < q
pl + l2 < ql
pq + pl + l2 < lq + pq
pq < pq + lq − lp− l2

pq < (p + l)(q − l)
then we have :

p

q − l
<

p + l

q
(3.22)

That is [p+l
q

, 1] is an invariant interval for Eq.( 3.3)

The next theorem, which is the result of Theorem 2.10 states that when (3.21)

holds, every nontrivial and oscillatory solution of Eq.(3.3) which lies in the

interval [p+l
q

, 1] oscillates about equilibrium point ȳ with semicycle at of length

at least k.

Theorem 3.6. Assume Eq.( 3.21) holds. Then every nontrivial and oscillatory
solution of Eq.( 3.3) which lies in the interval [p+l

q
, 1], after the first semicycle,

oscillates about ȳ with semicycles of length at least k.

Finally, we will analyze the semicycles of solutions {yn}∞n=−k under assumption that

p + l = q (3.23)
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In this case Eq.( 3.3) will be

yn+1 =
p + yn + lyn−k

yn + (p + l)yn−k

(3.24)

with unique equilibrium point ȳ = 1.

Also equations ( 3.17) and ( 3.18) are reduced to

yn+1 − 1 = p
1− yn−k

yn + (p + l)yn−k

(3.25)

Lemma 3.3. Let {yn}∞n=−k be a solution of Eq.( 3.24). Then the following
statements are true:

1. If for some N ≥ 0, yN−k < 1, then yN+1 > 1

2. If for some N ≥ 0, yN−k = 1, then yN+1 = 1

3. If for some N ≥ 0, yN−k > 1, then yN+1 < 1

Th next result is direct consequence of lemma 3.3.

Corollary 3.1. Let {yn}∞n=−k be a solution of Eq. (3.24). Then {yn} oscillates
about the equilibrium ȳ = 1.

3.8 Global Stability Analysis

Our aim in this section is to establish Global stability of equilibrium point ȳ of

Eq.( 3.3).

Theorem 3.7. Assume that q = l. The equilibrium point ȳ of Eq.( 3.3) is globally
asymptotically stable.

Proof. We proved that equilibrium point x is asymptotically stable in Sec. 3.4. Now
since f(u, v) is non increasing in both arguments, and solution of the system:
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m =
p + M + qM

M + qM

M =
p + m + qm

m + qm

implies m = M . Then by Theorem 2.5, every solution of Eq.( 3.3) converges to y.

Theorem 3.8. Assume that 3.19 holds. Then the equilibrium point y of Eq.( 3.3)
is globally asymptotically stable in the interval [1, p+l

q
].

Proof. It is enough to show that y is global attractor. The condition ( 3.20) guarantees
that f(u, v) is decreasing in both arguments, and solution of the system:

m =
p + M + lM

M + qM

M =
p + m + lm

m + qm

implies m = M . Then by Theorem 2.5, every solution of Eq.( 3.3) converges to y

Theorem 3.9. Assume that 3.21 holds. Then the equilibrium point y of Eq.( 3.3)
is globally asymptotically stable in the interval [p+l

q
, 1].

Proof. Again it is enough to show that y is global attractor. The condition ( 3.22)
guarantees that f(u, v) is increasing in u and decreasing in v, and solution of the
system:

m =
p + m + lM

m + qM

M =
p + M + lm

M + qm

implies m = M . Then by theorem 2.6, every solution of Eq.( 3.3) converges to y



Chapter 4

The Special Cases αβγBC = 0

In this chapter we examine the character of solution of Eq.(3.1) where one or more

of the parameters in Eq.(3.1) are zero. There are many such equations arises by

considering one or more parameters are zero.

Observe that some of these equations are meaningless like the case when the

parameters in the denominator are zero, and some of them are quite interesting and

have been studied by many authors.

4.1 One parameter = 0

In this section we examine the character of solution of Eq. (3.1) where one parameter

in Eq.(3.1) equal zero. There are five such equations, namely:

xn+1 =
βxn + γxn−k

Bxn + Cxn−k

, n = 0, 1, 2... (4.1)

xn+1 =
α + γxn−k

Bxn + Cxn−k

, n = 0, 1, 2... (4.2)

xn+1 =
α + βxn

Bxn + Cxn−k

, n = 0, 1, 2... (4.3)

68
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xn+1 =
α + βxn + γxn−k

Cxn−k

, n = 0, 1, 2... (4.4)

xn+1 =
α + βxn + γxn−k

Bxn

, n = 0, 1, 2... (4.5)

where the parameters α, β, γ, B, C are nonnegative real numbers and the initial con-

ditions x−k, x−k+1, · · · , x0 are arbitrary nonnegative real numbers.

4.1.1 Dynamics of xn+1 = βxn+γxn−k

Bxn+Cxn−k

The Eq.(4.1) was investigated by Sai’da Abu-baha’ in [1].

Lemma 4.1. The change variables xn = γ
C
yn reduces Eq.(4.1) into the difference

equation

yn+1 =
pyn + yn−k

qyn + yn−k

, n = 0, 1, 2... (4.6)

where p = β
γ

and q = B
C

with p, q ∈ (0,∞) and the initial conditions y−k, · · · , y0 are
nonnegative real numbers.

Proof. Substitute xn = γ
C
yn in Eq.(4.1), we get

γ

C
yn+1 =

β γ
C
yn + γ γ

C
yn−k

B γ
C
yn + C γ

C
yn−k

then
γ

C
yn+1 =

βyn + γyn−k

Byn + Cyn−k

thus
γ

C
yn+1 =

γ(β
γ
yn + yn−k)

C(B
C
yn + yn−k)

hence

yn+1 =

β
γ
yn + yn−k

B
C
yn + yn−k

set p = β
γ

and q = B
C

, we get Eq.(4.6)

She has shown the two cases p > q and p < q give rise to different dynamic

behaviors. She examine the investigated of the unique positive equilibrium point
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y = p+1
q+1

, period two solution, semicycles, invariant intervals, and global stability.

The main results were :

1. when p > q

• the equilibrium point is locally asymptotically stable.

• there no period two solution.

• the solution oscillates about equilibrium point y with semicycle of length

k+1 or k+2 except possibly for the first semicycle which may have length

k.

• The solution take its values between 1 and p
q
.

• The equilibrium point is globally asymptotically stable if p ≤ pq + 3q + 1

2. when p < q

(a) k is even.

• the equilibrium point is locally asymptotically stable.

• the solution oscillates about equilibrium point y with semisycle of

length k after the first semicycle or it converges monotonically to the

equilibrium point.

• The solution take its values between p
q

and 1.

(b) k is odd.
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i. q > pq + 3p + 1.

• The equilibrium point is unstable.

• There is a period two solution.

• The solution oscillates about equilibrium point y with semisycle

of length k after the first semicycle or it converges monotonically

to the equilibrium point.

• The solution take its values between p
q

and 1.

ii. q < pq + 3p + 1

• The equilibrium point is locally asymptotically stable.

• The solution oscillates about equilibrium point y with semisycle

of length k after the first semicycle or it converges monotonically

to the equilibrium point.

• The solution take its values between p
q

and 1.

• The equilibrium point is globally asymptotically stable.

4.1.2 Dynamics of xn+1 = α+γxn−k

Bxn+Cxn−k

Lemma 4.2. The change variables xn = γ
C
yn reduces Eq.(4.2) into the difference

equation

yn+1 =
p + yn−k

qyn + yn−k

, n = 0, 1, 2... (4.7)

where p = αC
γ2 and q = B

C
with p, q ∈ (0,∞) and the initial conditions y−k, · · · , y0

are nonnegative real numbers.
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Proof. Substitute xn = γ
C
yn in Eq.(4.2), we get

γ

C
yn+1 =

α + γ γ
C
yn−k

B γ
C
yn + C γ

C
yn−k

then
γ

C
yn+1 =

αC
γ

+ γyn−k

Byn + Cyn−k

thus
γ

C
yn+1 =

γ(αC
γ2 + yn−k)

C(B
C
yn + yn−k)

hence

yn+1 =

αC
γ2 + yn−k

B
C
yn + yn−k

Set p = αC
γ2 and q = B

C
, we get Eq.(4.7).

The Eq.(4.7) was investigated by Devalut, Kosmala, and Ladas in [5].

4.1.3 Dynamics of xn+1 = α+βxn

Bxn+Cxn−k

Lemma 4.3. The Eq.(4.3) is reduced by the change variables xn = β
B

yn into the

yn+1 =
p + yn

yn + qyn−k

, n = 0, 1, 2... (4.8)

where p = αB
β2 and q = C

B
with p, q ∈ (0,∞) and the initial conditions y−k, · · · , y0

are nonnegative real numbers.

Proof. Substitute xn = β
B

yn in Eq.(4.3), we get

β

B
yn+1 =

α + β β
B

yn

B β
B

yn + C β
B

yn−k

then
β

B
yn+1 =

αB
β

+ βyn

Byn + Cyn−k

thus
β

B
yn+1 =

β(αB
β2 + yn)

B(yn + C
B

yn−k)
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hence

yn+1 =

αB
β2 + yn

yn + C
B

yn−k

Set p = αB
β2 and q = C

B
, we get Eq.(4.8).

The Eq.(4.8) was investigated in [3]. They have concentrated on invariant inter-

vals, the character of semicycles, the global stability, and the boundedness.

4.1.4 Dynamics of xn+1 = α+βxn+γxn−k

Cxn−k

Lemma 4.4. The Eq.(4.4) is reduced by change of variable xn = γ
C
yn + γ

C
, into the

difference equation

yn+1 =
p + qyn

1 + yn−k

, n = 0, 1, 2... (4.9)

where p = αC+βγ
γ2 and q = β

γ
with p, q ∈ (0,∞) and the initial conditions y−k, · · · , y0

are nonnegative real numbers.

Proof. Substitute xn = γ
C
yn + γ

C
in Eq.(4.4). We get

γ

C
yn+1 +

γ

C
=

α + β( γ
C
yn + γ

C
) + γ( γ

C
yn−k + γ

C
)

C( γ
C
yn−k + γ

C
)

then
γ

C
yn+1 =

α + β( γ
C
yn + γ

C
) + γ( γ

C
yn−k + γ

C
)

C( γ
C
yn−k + γ

C
)

− γ

C

eliminate C in the denominators

γyn+1 =
α + β( γ

C
yn + γ

C
) + γ( γ

C
yn−k + γ

C
)

γ
C
yn−k + γ

C

− γ

1

thus

γyn+1 =
α + β( γ

C
yn + γ

C
) + γ( γ

C
yn−k + γ

C
)− γ( γ

C
yn−k + γ

C
)

γ
C
yn−k + γ

C

then

γyn+1 =
α + β( γ

C
yn + γ

C
)

γ
C
yn−k + γ

C

then

γyn+1 =

αC
γ

+ βyn + β

yn−k + 1
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then

γyn+1 =
γ(αC

γ2 + β
γ

+ β
γ
yn)

1 + yn−k

hence

yn+1 =

αC
γ2 + β

γ
+ β

γ
yn

1 + yn−k

Set p = αC
γ2 + β

γ
= αC+βγ

γ2 and q = β
γ
, we get Eq.(4.9).

The Eq.(4.9) was investigated in [4]. The authors studied the global stability,

boundedness of positive solutions, and character of semicycles of Eq.(4.9).

4.1.5 Dynamics of xn+1 = α+βxn+γxn−k

Bxn

Lemma 4.5. The Eq.(4.5) is reduced by change of variable xn = β
B

yn + β
B
, into

yn+1 =
p + qyn−k

1 + yn

, n = 0, 1, 2... (4.10)

where p = αB+Cβ
β2 and q = γ

β
with p, q ∈ (0,∞) and the initial conditions y−k, · · · , y0

are nonnegative real numbers.

Proof. The proof of this case is similar to Eq.(4.4) and can be omitted.

The Eq.(4.10) was investigated in [10] by Mahdi Dehghan, M. Jaberi Douraki,

and M. Razzaghi.

4.2 Two parameters are zero

In this section we examine the character of solution of Eq. (3.1) where two parameters

in Eq.(3.1) are zero. There are eight such equations, namely:

xn+1 =
γxn−k

Bxn + Cxn−k

, n = 0, 1, 2... (4.11)
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xn+1 =
βxn

Bxn + Cxn−k

, n = 0, 1, 2... (4.12)

xn+1 =
βxn + γxn−k

Cxn−k

, n = 0, 1, 2... (4.13)

xn+1 =
βxn + γxn−k

Bxn

, n = 0, 1, 2... (4.14)

xn+1 =
α

Bxn + Cxn−k

, n = 0, 1, 2... (4.15)

xn+1 =
α + γxn−k

Bxn

, n = 0, 1, 2... (4.16)

xn+1 =
α + βxn

Cxn−k

, n = 0, 1, 2... (4.17)

xn+1 =
α + βxn

Bxn

, n = 0, 1, 2... (4.18)

where the parameters α, β, γ, B, C are nonnegative real numbers and the initial

conditions x−k, x−k+1, · · · , x0 are arbitrary nonnegative real numbers.

4.2.1 Dynamics of xn+1 = γxn−k

Bxn+Cxn−k

Lemma 4.6. The Eq.(4.11) is reduced by the change of variables xn = γ
Byn

into

yn+1 = P +
yn−k

yn

, n = 0, 1, 2, ... (4.19)

where P = C
B
∈ (0,∞) and the initial conditions y−k, · · · , y0 are nonnegative real

numbers.

Proof. Substitute xn = γ
Byn

in Eq.(4.11). We get

γ

Byn+1

=

γ2

Byn−k

γ
yn

+ Cγ
Byn−k

cancel γ
B

from two sides, we get

1

yn+1

=

γ
yn−k

γ
yn

+ Cγ
Byn−k
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then
1

yn+1

=

1
yn−k

1
yn

+ C
Byn−k

by taking reciprocal of both sides

yn+1 =

1
yn

+ C
Byn−k

1
yn−k

hence

yn+1 =
yn−k

yn

+
C

B

set P = C
B

, we get Eq.(4.19). The proof is complete

The Eq.(4.19) was investigated in [13] and [9]. But in [9], the investigation is

restricted for P ∈ [1,∞).

4.2.2 Dynamics of xn+1 = βxn

Bxn+Cxn−k

Lemma 4.7. The change of variables xn = β
Cyn

reduces Eq.(4.12) into the difference
equation

yn+1 = P +
yn

yn−k

, n = 0, 1, 2, ... (4.20)

where P = B
C

and the initial conditions y−k, · · · , y0 are nonnegative real numbers.

Proof. Substitute xn = β
Cyn

in Eq.(4.12). We get

β

Cyn+1

=

β2

Cyn

Bβ
Cyn

+ β
yn−k

cancel β
C

from both sides, we get

1

yn+1

=

β
yn

Bβ
Cyn

+ β
yn−k

then by canceling β, we get

1

yn+1

=

1
yn

B
Cyn

+ 1
yn−k
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by taking reciprocal of both sides

yn+1 =

B
Cyn

+ 1
yn−k

1
yn

thus

yn+1 =
B

C
+

yn

yn−k

set P = B
C

, we get the Eq.(4.20). This completes the proof.

The Eq.(4.20) was studied in [2].

4.2.3 Dynamics of xn+1 = βxn+γxn−k

Cxn−k

Lemma 4.8. The change of variables xn = β
C
yn reduces The Eq.(4.13) into the

difference equation

yn+1 = P +
yn

yn−k

, n = 0, 1, 2, ... (4.21)

where P = γ
β

and the initial conditions y−k, · · · , y0 are nonnegative real numbers.

Proof. Substitute xn = β
C

in Eq.(4.13). We get

β

C
yn+1 =

β
C
βyn + β

C
γyn−k

β
C
Cyn−k

hence
β

C
yn+1 =

βyn + γyn−k

Cyn−k

then
β

C
yn+1 =

β[yn + γ
β
yn−k]

Cyn−k

by eliminating β
C

from both side, we get

yn+1 =
yn + γ

β
yn−k

yn−k

hence
yn+1 =

yn

yn−k

+
γ

β

set p = γ
β
, we get Eq.(4.21). The proof is complete.

The Eq.(4.20) was studied in [2].
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4.2.4 Dynamics of xn+1 = βxn+γxn−k

Bxn

Lemma 4.9. The change of variables xn = γ
B

yn reduces Eq.(4.14) to the difference
equation

yn+1 = P +
yn−k

yn

, n = 0, 1, 2, ... (4.22)

where P = β
γ
∈ (0,∞) and the initial conditions y−k, · · · , y0 are nonnegative real

numbers.

Proof. Substitute xn = γ
B

in Eq.(4.14). We get

γ

B
yn+1 =

γ
B

βyn + γ
B

γyn−k
γ
B

Byn

hence
γ

B
yn+1 =

βyn + γyn−k

Byn

then
γ

B
yn+1 =

γ[β
γ
yn + yn−k]

Byn

by eliminating γ
B

from both side, we get

yn+1 =

β
γ
yn + yn−k

yn

hence

yn+1 =
β

γ
+

yn−k

yn

set P = β
γ
, we get Eq.(4.22). The proof is complete.

The Eq.(4.22) was investigated in [13] and [9]. But in [9], the investigation is

restricted for P ∈ [1,∞).

4.2.5 Dynamics of xn+1 = α
Bxn+Cxn−k

The Eq.(4.15) is reduced by change of variables xn =
√

α
yn

into

yn+1 =
B

yn

+
C

yn−k

, n = 0, 1, 2, ... (4.23)
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where the initial conditions y−k, · · · , y0 are arbitrary nonnegative real numbers.

The only positive equilibrium point is y =
√

B + C. when k = 1, the Eq.(4.23)

was investigated in [11]. It was shown that every solution is bounded and persists, it

also shown that the equilibrium point y =
√

B + C is globally asymptotically stable.

In this monograph, we investigate the difference equation (4.23) when k ∈ {2, 3, ...}.
Theorem 4.1. Every solution of Eq.(4.23) is bounded and persists.

Proof. Let the contrary. i.e. there exists a solution {yn}∞n=−k which is neither bounded
from above nor from below. That is

lim
n→∞

sup yn = ∞ and lim
n→∞

inf yn = 0

Then clearly, we can find indices i and j with

1 ≤ i < j

such that
yi > yn > yj for all n ∈ {−k, ..., j − 1}

Hence

yj =
B

yj−1

+
C

yj−k−1

>
B + C

yi

and

yi =
B

yi−1

+
C

yi−k−1

≤ B + C

yj

that is
B + C < yiyj < B + C

which is impossible.

To investigate the stability of Eq.(4.23), let f(x, y) = B
x

+ C
y
.

Theorem 4.2. The equilibrium point y =
√

B + C is unstable when k is even.
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Proof. The linearized equation of Eq.(4.23) about the equilibrium point y =
√

B + C
is

zn+1 = − B

B + C
zn − C

B + C
zn−k, n = 0, 1, 2, ...

and its characteristic equation is

λk+1 +
B

B + C
λk +

C

B + C
= 0

Then the proof follows immediately from theorem 2.3.

Before we examine the existence of two cycles of eq.(4.23), it is worthwhile to

mention that when C = 1 and k = 2, it was shown by R.Devault and G. Ladas and

S.W. Schultz that every positive solution of the difference equation yn+1 = B
yn

+ 1
yn−2

converges to a period two solution.

Theorem 4.3. Let {yn}∞n=−k be a non-negative solution of Eq.(4.23). Then the fol-
lowing statements are true:

• If k is odd, then Eq.(4.23) does not have prime period-two solutions.

• If k is even, then Eq.(4.23) has prime period-two solution

..., φ, ψ, φ, ψ, ...

And the values φ and ψ of all prime period-two solutions are given by:

{φ, ψ ∈ (0,∞) : φψ = B + C}

Proof. Let
..., Φ, Ψ, Φ, Ψ, ...

be a period two solution of the Eq.(4.23) where ψ and φ are positive and distinctive,
then

• If k is odd, then we have

Φ =
B

Ψ
+

C

Φ
(4.24)

ψ =
B

Φ
+

C

Ψ
(4.25)
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from Eq.(4.24), we get

Φ =
Bφ + Cψ

φψ
(4.26)

from Eq.(4.25), we get

ψ =
Bψ + Cφ

φψ
(4.27)

from Eq.(4.26) and Eq.(4.27), we get

Bφ + Cψ

φ
=

Bψ + Cφ

ψ
(4.28)

then
Bφψ + Cψ2 = Bψφ + Cφ2 (4.29)

hence
Cψ2 = Bφ2

thus
φ = ψ

which is contradiction.

• If k is even, then

Φ =
B

Ψ
+

C

Ψ
and ψ =

B

Φ
+

C

Φ

which implies that
φψ = B + C

and the period two solution must be of the form

..., φ,
B + C

φ
, φ,

B + C

φ
, ...

which is completes the proof.

Theorem 4.4. Let {yn}∞n=−k be a solution of Eq.(4.23). Then the following state-
ments are true:

1. Suppose B + C > 1 and assume that for some N ≥ 0, yN−k, ..., yN−1, yN ∈
[1, B + C]. Then yn ∈ [1, B + C] for all n > N .
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2. Suppose B + C < 1 and assume that for some N ≥ 0, yN−k, ..., yN−1, yN ∈
[B + C, 1]. Then yn ∈ [B + C, 1] for all n > N .

3. Suppose B > C and assume that for some N ≥ 0, yN−k, ..., yN−1, yN ∈
[C, B

C
+ 1]. Then yn ∈ [C, B

C
+ 1] for all n > N .

4. Suppose B < C and assume that for some N ≥ 0, yN−k, ..., yN−1, yN ∈
[B, C

B
+ 1]. Then yn ∈ [B, C

B
+ 1] for all n > N .

Proof. The proof of this theorem is based on monotonic character.

1. Assume that for some N > 0, yN−k, ..., yN−1, yN ∈ [1, B + C]. Then

yN+1 =
B

yN

+
C

yN−k

≤ B + C

and

yN+1 =
B

yN

+
C

yN−k

≥ B

B + C
+

C

B + C
= 1

2. Assume that for some N > 0, yN−k, ..., yN−1, yN ∈ [B + C, 1]. Then

yN+1 =
B

yN

+
C

yN−k

≤ B

B + C
+

C

B + C
= 1

and

yN+1 =
B

yN

+
C

yN−k

≥ B + C

3. Assume that for some N > 0, yN−k, ..., yN−1, yN ∈ [C, B
C

+ 1]. Then

yN+1 =
B

yN

+
C

yN−k

≤ B

C
+

C

C
=

B

C
+ 1

and

yN+1 =
B

yN

+
C

yN−k

≥ B
B+C

C

+
C

B+C
C

= C

4. Assume that for some N ≥ 0, yN−k, ..., yN−1, yN ∈ [B, C
B

+ 1]. Then

yN+1 =
B

yN

+
C

yN−k

≤ B

B
+

C

B
=

C

B
+ 1

and

yN+1 =
B

yN

+
C

yN−k

≥ B
B+C

B

+
C

B+C
B

= B
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The proof is complete.

Theorem 4.5. Let k is odd, Then y =
√

B + C is globally attractor equilibrium point
of Eq.(4.23).

Proof. For u, v ∈ (0,∞), set

f(u, v) =
B

u
+

C

v

Then f : (0,∞) × (0,∞) → (0,∞) is continuous function and is nonincreasing in
both its argument. Let (m, M) ∈ (0,∞) is a solution of the system

m = f(M,M) and M = f(m,m)

then m = M when k is odd. By using Theorem 2.5, y =
√

B + C is globally
asymptotically stable equilibrium point of Eq.(4.23). This completes the proof.

Finally, we introduce the analysis od semicycles of Eq.(4.23) in the following the-

orem.

Theorem 4.6. Every oscillatory solution of Eq.(4.23) has semicycle of length at most
k

Proof. The proof follows from theorem 2.9 by observing that the function f(u, v) =
B
u

+ C
v

is decreasing in both its arguments. The proof is complete.

4.2.6 Dynamics of xn+1 = α+γxn−k

Bxn

When β = C = 0 we get the Eq.(4.16)

Lemma 4.10. The change of variables xn = γ
B

yn reduces Eq.(4.16) into the difference
equation

yn+1 =
P + yn−k

yn

(4.30)

where P = αB
γ2 ∈ (0,∞) and the initial conditions y−k, · · · , y0 are arbitrary nonneg-

ative real numbers.

Proof. Substitute xn = γ
B

yn in Eq.(4.16) to get

γ

B
yn+1 =

α + γ γ
B

yn−k

B γ
B

yn
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then
γ

B
yn+1 =

αB
γ

+ γyn−k

Byn

thus
γ

B
yn+1 =

γ[αB
γ2 + yn−k]

Byn

by canceling γ
B

from both sides, we get

yn+1 =

αB
γ2 + yn−k

yn

set P = αB
γ2 , we get Eq.(4.30)

The only positive equilibrium point is y = 1+
√

1+4p
2

. The linearized equation about

equilibrium point y is

zn+1 + zn − 2

1 +
√

1 + 4p
zn−k = 0

and its characteristic equation is:

λk+1 + λk − 2

1 +
√

1 + 4p
.

Theorem 4.7. The equilibrium point y = 1+
√

1+4p
2

is unstable.

The proof follow immediately by Theorem 2.3.

Theorem 4.8. The Eq.(4.30) has no positive prime period two solution.

Proof. Let there exist a solution of prime period two

..., φ, ψ, φ, ψ, ...

where φ and ψ are positive and distinct.
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• If k is odd. Then we have

φ =
p + φ

ψ
(4.31)

and

ψ =
p + ψ

φ
(4.32)

from Eq.(4.31), we get
φψ = p + φ (4.33)

and from Eq.(4.32), we get
φψ = p + ψ (4.34)

from Eq.(4.33)and Eq.(4.34), we get

p + φ = p + ψ

Hence
ψ = φ

which is a contradiction.

• If k is even. Then we have

φ =
p + ψ

ψ
(4.35)

and

ψ =
p + φ

φ
(4.36)

from Eq.(4.35), we get
φψ = p + ψ (4.37)

and from Eq.(4.36), we get
φψ = p + φ (4.38)

from Eq.(4.46)and Eq.(4.47), we get

p + φ = p + ψ

Hence
ψ = φ

which is a contradiction.

This completes the proof.

Theorem 4.9. The equilibrium point y = 1+
√

1+4p
2

of Eq.(4.30) is global attractor.
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Proof. For u, v ∈ (0,∞), set f(u, v) = p+v
u

. Then f : (0,∞) × (0,∞) → (0,∞) is
continuous function and is nonincreasing in u and nondecreasing in v. Let (m,M) ∈
(0,∞) is a solution of the system

m = f(M,m) and M = f(m,M)

Then
p + m = p + M

Hence
m = M

Then by using theorem 2.7, y = 1+
√

1+4p
2

is a global attractor equilibrium point of
Eq.(4.30). This completes the proof.

Theorem 4.10. Every oscillatory solution of Eq.(4.30) has semisycle of length k.

Proof. The proof follows immediately from theorem 2.8 by observing that the function
f(x, y) = p+y

x
is decreasing in x and increasing in y. The proof is complete.

4.2.7 Dynamics of xn+1 = α+βxn

Cxn−k

Lemma 4.11. The change of variables xn = β
C
yn reduces the Eq.(4.17) to the differ-

ence equation

yn+1 =
P + yn

yn−k

(4.39)

where P = αC
β2 ∈ (0,∞) and the initial conditions y−k, · · · , y0 are arbitrary nonneg-

ative real numbers.

Proof. Substitute xn = β
C
yn in Eq.(4.17) to get

β

C
yn+1 =

α + β β
C
yn

C β
C
yn−k

then
β

C
yn+1 =

αC
β

+ βyn

Cyn−k

thus
β

C
yn+1 =

β[αC
β2 + yn]

Cyn−k

by canceling β
C

from both sides, we get

yn+1 =

αC
β2 + yn

yn−k



87

set P = αC
β2 , we get Eq.(4.39)

The only positive equilibrium point is y = 1+
√

1+4p
2

. The linearized equation about

equilibrium point y is

zn+1 − 2

1 +
√

1 + 4p
zn + zn−k = 0

and its characteristic equation is:

λk+1 − 2

1 +
√

1 + 4p
λk + 1 = 0.

Remark 4.1. For k = 1, the Eq.(4.17) is well known in literature of Rational Difference
Equations as lyness’ Equation [11]. For this equation it is known that every solution
is bounded and persists and no nontrivial solution had a limit.

Theorem 4.11. The equilibrium point y = 1+
√

1+4p
2

is unstable.

The proof follow immediately by Theorem 2.3.

Theorem 4.12. The Eq.(4.39) has no positive prime period two solution.

Proof. Let there exist a solution of prime period two

..., φ, ψ, φ, ψ, ...

where φ and ψ are positive and distinct.

• If k is odd. Then we have

φ =
p + ψ

φ
(4.40)

and

ψ =
p + φ

ψ
(4.41)

from Eq.(4.40), we get
φ2 = p + ψ (4.42)
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and from Eq.(4.41), we get
ψ2 = p + φ (4.43)

from Eq.(4.42) and Eq.(4.43), we get

φ + ψ = −1

Which is a contradiction.

• If k is even. Then we have

φ =
p + ψ

ψ
(4.44)

and

ψ =
p + φ

φ
(4.45)

from Eq.(4.44), we get
φψ = p + ψ (4.46)

and from Eq.(4.45), we get
φψ = p + φ (4.47)

from Eq.(4.46) and Eq.(4.47), we get

p + φ = p + ψ

Hence
ψ = φ

which is a contradiction.

This completes the proof.

Theorem 4.13. The equilibrium point y = 1+
√

1+4p
2

of Eq.(4.39) is global attractor
when k is even.

Proof. For u, v ∈ (0,∞), set f(u, v) = p+u
v

. Then f : (0,∞) × (0,∞) → (0,∞) is
continuous function and is nondecreasing in u and nonincreasing in v. Let (m,M) ∈
(0,∞) is a solution of the system

m = f(m,M) and M = f(M,m)

Then
p + m = p + M

Hence
m = M

Then by using theorem 2.6, y = 1+
√

1+4p
2

is a global attractor equilibrium point of
Eq.(4.39). This completes the proof.
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Theorem 4.14. Every oscillatory solution of Eq.(4.39) has semisycle of length at
least k + 1.

Proof. The proof follows immediately from theorem 2.10 by observing that the func-
tion f(x, y) = p+x

y
is increasing in x and decreasing in y. The proof is complete.

The Eq.(4.18) is a Riccati equation and can be solved explicitly to determine the

character of its solution [6]. And the equilibrium point is globally asymptotically

stable.

4.3 Three parameters are zero

In this section we examine the character of solution of Eq. (3.1) where three param-

eters in Eq.(3.1) are zero. There are six such equations, namely:

xn+1 =
γxn−k

Cxn−k

, n = 0, 1, 2... (4.48)

xn+1 =
γxn−k

Bxn

, n = 0, 1, 2... (4.49)

xn+1 =
βxn

Cxn−k

, n = 0, 1, 2... (4.50)

xn+1 =
βxn

Bxn

, n = 0, 1, 2... (4.51)

xn+1 =
α

Cxn−k

, n = 0, 1, 2... (4.52)

xn+1 =
α

Bxn

, n = 0, 1, 2... (4.53)
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where the parameters α, β, γ, B, C are nonnegative real numbers and the initial

conditions x−k, x−k+1, · · · , x0 are arbitrary nonnegative real numbers.

The Eq.(4.48) is trivial, moreover, xn = γ
C

for all n ≥ 0.

The Eq.(4.49), which is the change of variables xn = γ
B

eyn reduces it to the linear

difference equation

yn+1 + yn − yn−k = 0, n = 0, 1, 2, ... (4.54)

To prove this transformation, substitute xn = γ
B

eyn in Eq.(4.49), we get

γ

B
eyn+1 =

γ γ
B

eyn−k

B γ
B

eyn

thus

eyn+1 =
eyn−k

eyn

hence

eyn+1 = eyn−k−yn

then

yn+1 = yn−k − yn

hence

yn+1 + yn − yn−k = 0

Note that when k = 1, we have the following linear difference equation

yn+1 + yn − yn−1 = 0, n = 0, 1, 2, ...
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and its general solution is

yn = c1(
−1 +

√
5

2
)n + c2(

−1−√5

2
)n

where c1 and c2 are arbitrary.

Lemma 4.12. The equilibrium point of Eq.(4.54) is unstable when k ≥ 2.

Proof. The proof is consequently from Theorem 2.4.

The Eq.(4.50) is reduced by change of variables xn = β
C
yn into the difference

equation

yn+1 =
yn

yn−k

(4.55)

when k = 1, every solution of Eq(4.55) is periodic with period 6, and its solution is:

· · · , x−1, x0,
x0

x−1

,
1

x−1

,
1

x0

,
x−1

x0

, · · ·

when k > 1, the change of variable xn = γ
B

eyn reduces Eq.(4.50) into the linear

difference equation

yn+1 − yn + yn−k = 0, n = 0, 1, 2, ... (4.56)

Lemma 4.13. The equilibrium point of Eq.(4.56) is unstable when k ≥ 2.

Proof. The proof is consequently from Theorem 2.4.

The solution of Eq.(4.51) is trivial. The Eq.(4.52) has nontrivial solution, and

every solution is periodic with period 2(k+1). Finally, every solution of Eq.(4.53) is

periodic with period two.



Chapter 5

Computational Approach

5.1 Numerical Examples

In this section, we illustrate the results of previous sections and to support our the-

oretical discussions. We consider different numerical examples in this section. These

examples represent different types of qualitative behavior of solutions to nonlinear

difference equations.

In order to achieve the full benefits of computers, and to observe this numerical

results clearly, we present both graphs and tables of solutions that were carried out

using MATLAB. Different values of parameters are chosen, and It should be noted

that y−k, y−k+1, ..., y0 are also different initial points.

Example 5.1. Consider the third order difference equation when k = 2 in Eq.(3.10)

yn+1 =
1 + yn + 2yn−2

yn + 2yn−2

, n = 0, 1, 2, ...

with initial conditions y−2 = 1, y−1 = 2, y0 = 3

In previous chapter, we have proved in theorem 3.2 that y is asymptotically stable.

look at the table 5.1 and figure 5.1. Observe that y = 1.2638 is asymptotically stable.

92
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n y(n) n y(n) n y(n) n y(n)
1 1 26 1.2638 51 1.2638 76 1.2638
2 2 27 1.2638 52 1.2638 77 1.2638
3 3 28 1.2638 53 1.2638 78 1.2638
4 1.2000 29 1.2638 54 1.2638 79 1.2638
5 1.1923 30 1.2638 55 1.2638 80 1.2638
6 1.1390 31 1.2638 56 1.2638 81 1.2638
7 1.2826 32 1.2638 57 1.2638 82 1.2638
8 1.2727 33 1.2638 58 1.2638 83 1.2638
9 1.2816 34 1.2638 59 1.2638 84 1.2638

10 1.2600 35 1.2638 60 1.2638 85 1.2638
11 1.2628 36 1.2638 61 1.2638 86 1.2638
12 1.2614 37 1.2638 62 1.2638 87 1.2638
13 1.2645 38 1.2638 63 1.2638 88 1.2638
14 1.2633 39 1.2638 64 1.2638 89 1.2638
15 1.2641 40 1.2638 65 1.2638 90 1.2638
16 1.2636 41 1.2638 66 1.2638 91 1.2638
17 1.2638 42 1.2638 67 1.2638 92 1.2638
18 1.2637 43 1.2638 68 1.2638 93 1.2638
19 1.2638 44 1.2638 69 1.2638 94 1.2638
20 1.2638 45 1.2638 70 1.2638 95 1.2638
21 1.2638 46 1.2638 71 1.2638 96 1.2638
22 1.2638 47 1.2638 72 1.2638 97 1.2638
23 1.2638 48 1.2638 73 1.2638 98 1.2638
24 1.2638 49 1.2638 74 1.2638 99 1.2638
25 1.2638 50 1.2638 75 1.2638 100 1.2638

Table 5.1: Solution of DE yn+1 = 1+yn+2yn−2

yn+2yn−2
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Example 5.2. Consider the fourth order difference equation when k = 3 in Eq.(3.10)and
parameters:p = 2, l = 3, and q = 4

yn+1 =
2 + yn + 3yn−3

yn + 4yn−3

, n = 0, 1, 2, ...

with initial conditions y−3 = 1, y−2 = 1.2, y−1 = 1.1, y0 = 1.15

Observe that p + l > q and y−3, y−2, y−1, y0 ∈ [1, 1.25]. then by theorem 3.3 yn ∈

[1, 1.25] for all n = 0, 1, 2, .... this case y = 1.1483For Fortunately, the computational

result emphasis the theoretical result. Look at the table 5.2 and figure 5.2.

Example 5.3. Consider the third order difference equation when k = 2 in Eq.(4.23)with
parameters B = 2 and C = 3

yn+1 =
2

yn

+
3

yn−2

and initial conditions y−2 = 1, y−1 = 2, y0 = 3.

Example 5.4. In section 3.6, we investigated the existence of two cycles, and theorem
3.4 investigated the conditions of existence of two cycles. Consider the fourth order
difference equation when k = 3 in Eq. (3.3) with parameters p=3, l=7, and q=0.4

yn+1 =
3 + yn + 7yn−3

yn + 0.4yn−3
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n y(n) n y(n) n y(n) n y(n)
1 1 26 1.1484 51 76
2 1.2000 27 1.1483 52 77
3 1.1000 28 1.1483 53 78
4 1.1500 29 1.1484 54 79
5 1.1942 30 1.1483 55 80
6 1.1335 31 1.1483 56 81
7 1.1626 32 1.1483 57 82
8 1.1475 33 1.1483 58 83
9 1.1360 34 1.1483 59 84

10 1.1528 35 1.1483 60 85
11 1.1443 36 1.1483 61 86
12 1.1487 37 1.1483 62 87
13 1.1518 38 1.1483 63 88
14 1.1470 39 1.1483 64 89
15 1.1495 40 1.1483 65 90
16 1.1482 41 66 91
17 1.1474 42 67 92
18 1.1487 43 68 93
19 1.1480 44 69 94
20 1.1480 45 70 95
21 1.1486 46 71 96 1.1483
22 1.1482 47 72 97 1.1483
23 1.1484 48 73 98 1.1483
24 1.1483 49 74 99 1.1483
25 1.1483 50 75 100 1.1483

Table 5.2: Solution of DE yn+1 = 2+yn+3yn−3

yn+4yn−3
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n y(n) n y(n) n y(n) n y(n)
1 1 26 2.2194 51 2.2539 76 2.2184
2 2 27 2.2516 52 2.2184 77 2.2539
3 4 28 2.2164 53 2.2539 78 2.2184
4 3.5 29 2.2541 54 2.2184 79 2.2539
5 2.0714 30 2.2196 55 2.2539 80 2.2184
6 1.7155 31 2.2546 56 2.2184 81 2.2539
7 2.0230 32 2.2180 57 2.2539 82 2.2184
8 2.4369 33 2.2533 58 2.2184 83 2.2539
9 2.5695 34 2.2182 59 2.2539 84 2.2184

10 2.2613 35 2.2542 60 2.2184 85 2.2539
11 2.1155 36 2.2186 61 2.2539 86 2.2184
12 2.1130 37 2.2539 62 2.2184 87 2.2539
13 2.2732 38 2.2182 63 2.2539 88 2.2184
14 2.2979 39 2.2538 64 2.2184 89 2.2539
15 2.2901 40 2.2184 65 2.2539 90 2.2184
16 2.1930 41 2.2540 66 2.2184 91 2.2539
17 2.2175 42 2.2184 67 2.2539 92 2.2184
18 2.2119 43 2.2539 68 2.2184 93 2.2539
19 2.2722 44 2.2183 69 2.2539 94 2.2184
20 2.2331 45 2.2539 70 2.2184 95 2.2539
21 2.2519 46 2.2184 71 2.2539 96 2.2184
22 2.2084 47 2.2539 72 2.2184 97 2.2539
23 2.2490 48 2.2184 73 2.2539 98 2.2184
24 2.2215 49 2.2539 74 2.2184 99 2.2539
25 2.2587 50 2.2184 75 2.2539 100 2.2184

Table 5.3: Solution of yn+1 = 2
yn

+ 3
yn−2
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and initial conditions y−3 = 2, y−2 = 5, y−1 = 8, and y0 = 9.Look at the table 5.4 and
figure 5.4 and observe that the solution converges to two-cycle ={2.3765, 12.6235}.

n y(n) n y(n) n y(n) n y(n)
1 2 26 11.0089 51 2.4340 276 12.6235
2 5 27 2.9170 52 12.4743 277 2.3765
3 8 28 11.2464 53 2.4234 278 12.6235
4 9 29 2.8508 54 12.5017 279 2.3765
5 2.6531 30 11.4294 55 2.4148 280 12.6235
6 8.7368 31 2.7666 56 12.5241 281 2.3765
7 5.6746 32 11.6297 57 2.4077 282 12.6235
8 7.7281 33 2.7083 58 12.5425 283 2.3765
9 3.3335 34 11.7737 59 2.4019 284 12.6235

10 9.8841 35 2.6505 60 12.5575 285 2.3765
11 4.3283 36 11.9219 61 2.3972 286 12.6235
12 8.2788 37 2.6051 62 12.5698 287 2.3765
13 3.6010 38 12.0336 63 2.3933 288 12.6235
14 10.0322 39 2.5651 64 12.5798 289 2.3765
15 3.6835 40 12.1379 65 2.3902 290 12.6235
16 9.2402 41 2.5322 66 12.5879 291 2.3765
17 3.5061 42 12.2206 67 2.3876 292 12.6235
18 10.2050 43 2.5045 68 12.5946 293 2.3765
19 3.3386 44 12.2926 69 2.3856 294 12.6235
20 10.0957 45 2.4815 70 12.6000 295 2.3765
21 3.2734 46 12.3512 71 2.3839 296 12.6235
22 10.5648 47 2.4626 72 12.6044 297 2.3765
23 3.1037 48 12.4005 73 2.3825 298 12.6235
24 10.7496 49 2.4469 74 12.6079 299 2.3765
25 3.0404 50 12.4409 75 2.3814 300 12.6235

Table 5.4: Solution of yn+1 = 3+yn+7yn−3

yn+0.4yn−3

Example 5.5. Consider the third order difference equation when k = 2 in Eq.(4.52)

yn+1 =
p

xn−2

, n = 0, 1, 2, ...

where p = α
C
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In Sec.(4.3), We proved that there is no trivial solution, and every nontrivial

solution is periodic with prime period2(k + 1). In this case the solution should be

with period 6. Look at the table 5.5 and Figure 5.5, we note that the solution periodic

with period 6. That is, the 6-cycle={3, 2, 4, 1.6667, 2.5, 1.25}.
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N X(n) N X(n) N X(n) N X(n)
1 3 26 2 51 4 76 1.6667
2 2 27 4 52 1.6667 77 2.5
3 4 28 1.6667 53 2.5 78 1.25
4 1.6667 29 2.5 54 1.25 79 3
5 2.5 30 1.25 55 3 80 2
6 1.25 31 3 56 2 81 4
7 3 32 2 57 4 82 1.6667
8 2 33 4 58 1.6667 83 2.5
9 4 34 1.6667 59 2.5 84 1.25

10 1.6667 35 2.5 60 1.25 85 3
11 2.5 36 1.25 61 3 86 2
12 1.25 37 3 62 2 87 4
13 3 38 2 63 4 88 1.6667
14 2 39 4 64 1.6667 89 2.5
15 4 40 1.6667 65 2.5 90 1.25
16 1.6667 41 2.5 66 1.25 91 3
17 2.5 42 1.25 67 3 92 2
18 1.25 43 3 68 2 93 4
19 3 44 2 69 4 94 1.6667
20 2 45 4 70 1.6667 95 2.5
21 4 46 1.6667 71 2.5 96 1.25
22 1.6667 47 2.5 72 1.25 97 3
23 2.5 48 1.25 73 3 98 2
24 1.25 49 3 74 2 99 4
25 3 50 2 75 4 100 1.6667

Table 5.5: Solution of DE xn+1 = 5
xn−2
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5.2 Phase Space Diagram

Phase space (also known as state space) is the set of all possible states of a dynamical

system. Since it is usually impossible to derive an explicit formula for the solution of a

nonlinear equation except for a few types which have been introduce in section (1.5).

The phase space provides an extremely useful way for visualizing and understanding

qualitative features of solutions. In this section we introduce phase state diagrams

of some difference equations and compare these graphs with time series graphs for

the same of difference equations. The following example we present a convergence

solution.

Example 5.6. Consider the fourth order difference equation when k = 3.

yn+1 =
2 + yn + 4yn−3

yn + 4yn−3

Figure (5.6) illustrates phase state diagram for four sets of initial values.

The next example illustrates a divergence sequence.

Example 5.7. Consider the fourth order difference equation when k = 3.

yn+1 =
3 + yn + 7yn−3

yn + 0.4yn−3

Figure (5.7) illustrate phase state diagram while figure (5.8) illustrates time series

solution.
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5.3 Matlab Program

The mfile function investigate the the nonlinear rational difference equation: 3.3

xn+1 =
p + xn + lxn−k

xn + qxn−l

, n = 0, 1, 2, · · ·

where the parameters p, q and initial conditions x−k, x−k+1, ..., x0 are nonnegative real

numbers, k = {1, 2, 3, ...}

There have been many good programs on Dynamical systems and Difference equa-

tions that concentrate on one or two aspects, but our program is really fantastic for

these reasons :

1. Our program is user friendly.

2. The program calculate the equilibrium point.
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3. You need not to write parameters when you invoke the program.

4. It give a readable out put, i.e. the out put appear in a table.

5. It produce an excellent plots that represent a solution of Difference equation.

6. It deals with an arbitrary k. I believe it is one of the most advantages of our

program, because every time the user run the program can enter the value of k

which make the program more reliable.

7. Finally, this program can be easily modified for a new type of Difference equa-

tions.

For more information, see Appendix.

Remark 5.1. The mfile in A.1 that has been reported is designed to solve the rational
difference equation

yn+1 =
p + yn + lyn−k

yn + qyn−k

, n = 0, 1, ...

where the parameters p, q, and are nonnegative real numbers and the initial conditions
y−k, y−k+1, · · · , y0 are arbitrary nonnegative real numbers.

Hence, if we want solve an equation that rises from special cases in ch.4, a slightly
modification is needed. Furthermore, we need to modify the difference equation and
the inserting parameters code.



Appendix A

Appendix

A.1 Rational Difference Equation Program

% A File to the rational difference equations of order k

% call as: ratdiff

%You have to enter parameters: p, l, q

% and initial values: y

%This program solves the equation :

% Xn+1 = ( p + Xn + l*Xn-k )/( Xn + q*Xn-k)

% numerically producing a table and graph of the solution

% It has been designed to deal with arbitrary k

function ratdiff;

k=input(’enter the value of the positive integer k = ’);

p=input(’enter the value of the positive parameter p = ’);

l=input(’enter the value of the positive parameter L = ’);

105
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q=input(’enter the value of the positive parameter q = ’);

solution =ddifkk(k,p,l,q);

disp(’ ’)

disp(’ Table ’)

disp(’ ’)

disp(’The solution x(n) is given in the following table : ’)

d=[solution(1:25,:),solution(26:50,:),solution(51:75,:),solution(276:300,:)];

disp(’——————————————————————————-’)

disp(’ n x(n) n x(n) n x(n) n x(n)’)

disp(’——————————————————————————-’)

disp(d)

fixedpoint=(((1+l)+ sqrt((1+l)∧2+4*p*(1+q)))/(2*(1+q)));

fprintf(’fixedpoint =%2.4f. n’,fixedpoint);

function plotandeval=ddifkk(k,p,l,q);

% Give an initial values for y(-k)... y(0)

for i=1:k+1;

x(i)=input(’Enter the value of the positive initial condition x =’);

end

for n=k+1:300

x(n+1)=(p+x(n)+l*x(n-k))/(x(n)+q*x(n-k));
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end

t=1:301;

plotandeval=[t;x]’;

grid on

hold on

t=1:301;

plot(t,x,’b.-’);

xlabel(’n-iteration’);

ylabel(’Y(n)’);

title(’plot of y(n+1)=(p+y(n)+l*y(n-k))/(y(n)+q*y(n-l)’);

p1=strcat(’k= ’,num2str(k));

p2=strcat(’p= ’,num2str(p),’, q= ’,num2str(q),’, l= ’,num2str(l));

legend(p1,p2);

A.2 Phase Space Diagram Program

function ratdiffphas;

k=input(’enter the value of the positive integer k = ’);

p=input(’enter the value of the positive parameter p = ’);

l=input(’enter the value of the positive parameter L = ’);

q=input(’enter the value of the positive parameter q = ’);

xn=zeros(1,300);
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xnn=zeros(1,300);

fixedpoint=(((1+l)+sqrt((1+l)∧2+4*p*(1+q)))/(2*(1+q)));

fprintf(’fixedpoint =

for i=1:k+1;

x(i)=input(’enter the value of the positive initial condition x =’);

end for j=1:k;

y(j)=x(j+1);

end

for n=k+1:299

y(n)=(p+x(n)+l*x(n-k))/(x(n)+q*x(n-k));

x(n+1)=y(n);

end

y(300)=(p+x(300)+l*x(300-k))/(x(300)+q*x(300-k));

grid on

hold on

plot(x,y,’b.-’)

xlabel(’y(n)’)

ylabel(’y(n+1)’)

title(’plot of y(n+1)=(p+y(n)+l*y(n-k))/(y(n)+q*y(n-l)’);

p1=strcat(’k= ’,num2str(k));
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p2=strcat(’p= ’,num2str(p),’, q= ’,num2str(q),’, l= ’,num2str(l));

legend(p1,p2);

A.3 Cobweb Diagram Program

Cobweb Diagram

First Order Difference Equations A proc to generate a sequence of

iterates of the difference equation

> restart;with(plots):setoptions(thickness=2):

Define a function (procedure) that will generate the iterates of a function g

local i;

seq((g@@i)(p0), i=0..nmax)

end:

Define the data and the function h where x(n+1)=h(x(n))

> r:= 3.55:

h := x -> r*x*(1-x);

> data:=[iterates(h,0.1,30)]:

> datapoint := [seq([n-1,data[n]],n=1..30)]:

Plot the time dependent behavior

> rr := convert(r,string):

code := cat(‘Discrete Logistic - r =‘,rr);

plot(datapoint,x=0..30,0..1,title=code);
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A proc to generate a cobweb graph of an iteration - lastn even

> cobweb:= proc(g,t1,lastn)

local pp, pp1, i, plot1, plot2;

pp1:= [seq((g@@(trunc((i+2)/4)))(t1) ,i=1..lastn)];

pp:= [seq([pp1[2*i-1],pp1[2*i]],i=1..lastn/2)];

plot1:= plot(pp,x=0..1):

plot2:= plot(x,g(x),x=0..1,color=black):

plots[display](plot1,plot2);

end:

Execute the cobweb procedure

> cobweb(h,0.2,30);

%End the program
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